giải phương trình : 1 +tanx =2. (sinx + cosx) giúp e
\(\dfrac{1+sinx+cosx}{cos2x-1}\)=\(2-tanx\)
giải phương trình
Giải phương trình:
sinx + tanx = \(\frac{1}{cosx}\)- cosx
Giải các phương trình sau:
a/ sinx + cosx = \(2\sqrt{2}\)sinx.cosx
b/ 3sinx - \(\sqrt{3}\)cosx = 0
c/ tanx . sinx +cosx . cosx = sinx + cosx
a) Đặt \(sinx+cosx=t\left(\left|t\right|\le\sqrt{2}\right)\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)
=> pt có dạng: \(t=\sqrt{2}\left(t^2-1\right)\Leftrightarrow\sqrt{2}t^2-t-\sqrt{2}=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=\frac{-\sqrt{2}}{2}\\t=\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}sinx+cosx=\frac{-\sqrt{2}}{2}\\sinx+cosx=\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}sin\left(x+\frac{\pi}{4}\right)=\frac{-1}{2}\\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{\pi}{4}=\frac{-\pi}{6}+2k\pi\\x+\frac{\pi}{4}=\frac{7\pi}{6}+2k\pi\\x+\frac{\pi}{4}=\frac{\pi}{2}+2k\pi\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-5\pi}{12}+2k\pi\\x=\frac{11\pi}{12}+2k\pi\\x=\frac{\pi}{4}+2k\pi\end{cases}}\left(k\inℤ\right)}\)
Giải phương trình:
a, \(Tanx+Cosx-Cos^2x=Sinx\left(1+Tanx.Tan\dfrac{x}{2}\right)\)
b, \(1+Sinx+Cosx+Sin2x+Cos2x=0\)
1 + sinx + cosx + sin2x + cos2x = 0
<=> sin^2x+ cos^2 x + ( sinx+cosx) + 2.sinx.cosx + ( cos^2 x - sin^2 x)=0
<=> 2 cos^2 x + 2sinx.cosx + sinx + cosx =0
<=> 2cosx ( cos x + sinx) + sinx + cosx = 0
<=> ( cosx + sinx ) (2 cos x + 1 ) = 0
<=> cosx + sinx = 0 hoặc 2cosx + 1 =0
Từ phương trình 2 (sinx + cosx)= tanx + cotx, ta tìm được cosx có giá trị bằng
A. 1
B. 2
C. 3
D. 4
Chọn C
Bổ trợ kiến thức: Ta có thế giải bằng máy tính cầm tay CASIO fx-570VN PLUS như sau, đầu tiên dùng lệnh SHIFT SOLVE để xem 1 nghiệm bất kì có thể có của phương trình đã cho:
Tiếp theo ta tính cos x thì dễ thấy được:
Đến đây ta dễ dàng chọn được phương án C là phương án đúng thay cho lời giải tự luận nhiều phức tạp.
giải phương trình lượng giác sau:
tanx-3cotx=4(sinx+\(\sqrt{3}\)cosx)
Giải pt
\(cotx-tanx=sinx+cosx\)
\(sinx+cosx+\dfrac{1}{sinx}+\dfrac{1}{cosx}=\dfrac{10}{3}\)
1.
ĐK: \(x\ne\dfrac{k\pi}{2}\)
\(cotx-tanx=sinx+cosx\)
\(\Leftrightarrow\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=sinx+cosx\)
\(\Leftrightarrow\dfrac{cos^2x-sin^2x}{sinx.cosx}=sinx+cosx\)
\(\Leftrightarrow\left(\dfrac{cosx-sinx}{sinx.cosx}-1\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx=sinx.cosx\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\)
\(\left(2\right)\Leftrightarrow t=\dfrac{1-t^2}{2}\left(t=cosx-sinx,\left|t\right|\le2\right)\)
\(\Leftrightarrow t^2+2t-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow cosx-sinx=-1+\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=-1+\sqrt{2}\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=-\dfrac{\pi}{4}+k\pi;x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi;x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\)
Giải pt ( Phương trình đối xứng và nửa đối xứng)
a) \(1+tanx=2\sqrt{2}sinx\)
b) \(\left|cosx-sinx\right|+2sin2x=1\)
c) \(cos^3x+sin^3x=cos2x\)
d) \(cos^3x+sin^3x=2sin2x+sinx+cosx\)
e) \(cosx+\frac{1}{cosx}+sinx+\frac{1}{sinx}=\frac{10}{3}\)
a) \(1-cot^4x=\frac{2}{sin^2x}-\frac{1}{sin^4x}\)
b)\(\frac{1-2sinx.cosx}{cos^2-sin^2}\)\(=\frac{1-tanx}{1+tanx}\)\(\)
c)\(\frac{sin^2x}{sinx-cosx}+\frac{sinx+cosx}{1-tanx}=sinx+cosx\)
d)\(\sqrt{\frac{1+cosx}{1-cosx}}-\sqrt{\frac{1-cosx}{1+cosx}}=\frac{2.cosx}{|sin|}\)
e)\(tan^3x+tan^2x+tanx+1=\frac{sinx+cosx}{cos^3x}\)