Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngân Lê Bảo
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 7 2021 lúc 21:59

\(M=\left(\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right).\dfrac{\sqrt{x}-2}{2}\)

\(=\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

2. Ta có: 

\(\sqrt{x}>0\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+2}>0\) hay \(M>0\)

Lại có: \(M=\dfrac{\sqrt{x}+2-1}{\sqrt{x}+2}=1-\dfrac{1}{\sqrt{x}+2}< 1\)

\(\Rightarrow0< M< 1\Rightarrow M>M^2\)

Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 22:48

1) Ta có: \(M=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right)\cdot\dfrac{\sqrt{x}-2}{2}\)

\(=\dfrac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}-2}{2}\)

\(=\dfrac{2\sqrt{x}+2}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

Ánh Mạch
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2021 lúc 23:19

Câu 1: Vì (d') vuông góc với (d) nên \(a\cdot\dfrac{-1}{3}=-1\)

hay a=3

Vậy: (d'): y=3x+b

Thay x=4 và y=-5 vào (d'), ta được:

b+12=-5

hay b=-17

Hoàng Anh Nguyễn
Xem chi tiết
Quân Kobt
Xem chi tiết
Hậu Vi
Xem chi tiết
Minh Nhân
26 tháng 11 2021 lúc 13:04

Sửa đề là : 4.6 (g) 

\(n_{H_2}=\dfrac{2.24}{22.4}=0.1\left(mol\right)\)

\(A+H_2O\rightarrow AOH+\dfrac{1}{2}H_2\)

\(0.2...............................0.1\)

\(M_A=\dfrac{4.6}{0.2}=23\left(\dfrac{g}{mol}\right)\)

\(A:Na\)

Đề này C1 em sửa thành 4,6 gam kim loại như bạn dưới, C2 em sửa thành 22,4 lít H2

Ngân Lê Bảo
Xem chi tiết
Trúc Giang
26 tháng 6 2021 lúc 21:52

undefined

Nguyễn Lê Phước Thịnh
26 tháng 6 2021 lúc 22:16

Bài 1.2

1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

2) Ta có: \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}+1}{3-\sqrt{x}}-\dfrac{3-11\sqrt{x}}{x-9}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)

•Pɦụйǥ Ňè•
Xem chi tiết
halinh
3 tháng 1 2021 lúc 18:53

cách sưng hô bác-tôi của tác giả thể hiện sự thân thiết đồng thời thể hiện sự kính trọng của tác giả đối với người bạn thân của mình

CHÚC BẠN HỌC TỐT

Phúc
18 tháng 7 2021 lúc 16:10

Cách sưng hô bác-tôi có ý nghĩa là : tình bạn thân thiết của tác giả đối với người bạn lâu gặp

perfect shadow
Xem chi tiết
Đức Phạm
9 tháng 7 2017 lúc 13:43

Đặt \(C=1.2.3+2.3.4+3.4.5+...+99.100.101\)

\(4C=1.2.3.4+2.3.4.4+3.4.5.4+...+99.100.101.4\)

\(4C=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+....+99.100.101.\left(102-98\right)\)

\(4C=1.2.3.4+2.3.4.5+3.4.5.6+...+99.100.101.102\)

\(4C=99.100.101.102=101989800\)

\(\Rightarrow C=\frac{101989800}{4}=25497450\)

Lê Minh Vũ
9 tháng 7 2017 lúc 13:39

A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100

4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100).4

4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)

4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100

4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101

4A=98.99.100.101

A=98.99.100.101/4

Hoàng Anh Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 11:25

\(a,ĐK:x\ge0;x\ne4\\ A=\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=2\sqrt{x}+1\\ B=\dfrac{\left(x-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=x-1\\ b,M=A:B=\dfrac{2\sqrt{x}+1}{x-1}=\dfrac{2\left(\sqrt{x}+1\right)-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ M=\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\in Z\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\\sqrt{x}+1\inƯ\left(1\right)=\left\{-1;1\right\}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}\in\left\{0;2;3\right\}\left(\sqrt{x}\ge0\right)\\\sqrt{x}=0\left(\sqrt{x}\ge0\right)\end{matrix}\right.\Leftrightarrow x=0\)