Chứng tỏ rằng:
a) ( 1010 + 43 ) ko chia hết cho 3
b) ( 100100 + 23 ) chia hết cho 9
Cho x,y là 2 số nguyên.Chứng tỏ rằng:
a)Cho A=(2x+5y)(11x+8y) chia hết cho 13 chứng tỏ A chia hết cho 169
b) Nếu 4x+7y chia hết cho 23 thì 11x+2y chia hết cho 23
c) Nếu 3x+12y chia hết cho 13 thì 10x+y chia hết cho 13
Cho ( 5a - 3b ) chia hết cho 23. Chứng tỏ ( 13a + 6b ) chia hết cho 23.
Cho a , b thuộc N thỏa mãn 7a + 3b chia hết cho 23
Chứng tỏ rằng 4a + 5b chia hết cho 23
Ta có: 23a + 23b chia hết cho 23
=>\(7a+3b+16a+20b\) chia hết cho 23
=>\(7a+3b+4\left(4a+5b\right)\)chia hết cho 23
Theo đề bài: 7a + 3b chia hết cho 23
=> 4(4a + 5b) chia hết cho 23
Mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23 (đpcm)
Cho a , b thuộc N thỏa mãn 7a + 3b chia hết cho 23
Chứng tỏ rằng 4a + 5b chia hết cho 23
B=4+42+43+...+423+424.Chứng tỏ rằng:A chia hết chia hết cho 20,21,420
cho A=1+2+22+23+.....+241
a) Thu gọn tổng A
b) chứng tỏ rằng:a chia hết cho 3,7
c)tìm số dư của a khi chia cho 5
a: \(A=1+2+2^2+...+2^{41}\)
=>\(2A=2+2^2+2^3+...+2^{42}\)
=>\(2A-A=2^{42}-1\)
=>\(A=2^{42}-1\)
b: \(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{40}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{40}\right)⋮3\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{39}\left(1+2+2^2\right)\)
\(=7\left(1+2^3+...+2^{39}\right)⋮7\)
Chứng tỏ rằng:
a, Số 1021 + 5 chia hết cho 3 và 5;
b, Số 10n + 8 chia hết cho 2 và 9 ( n ∈ N * )
a) Ta có: 10^21 + 5=100...00(21 c/s 0) + 5=100....05(20 c/s 0)
-Để 100....05(20 c/s 0) chia hết cho 3 thì: 1+0+0+...+0+5 (20 c/s 0)=6 - chia hết cho 3. (1)
-mà 100....05(20 c/s 0) có c/s tận cùng là 5 => 100....05(20 c/s 0) chia hết cho 5 => 10^21 + 5 chia hết cho 5 (2)
Từ (1) và (2) => 10^21 + 5 chia hết cho 3 và 5
b)Ta có: 10^n + 8=100...00(n c/s 0) + 8=100....08(n-1 c/s 0)
-Để 100....08(n-1 c/s 0) chia hết cho 9 thì: 1+0+0+...+0+8 (n-1 c/s 0)=9 - chia hết cho 9. (1)
-mà 100....08(n-1 c/s 0) có c/s tận cùng là 8 => 100....08(n-1 c/s 0) chia hết cho 2 => 10^n + 8 chia hết cho 2 (2)
Từ (1) và (2) =>10^n + 8 chia hết cho 2 và 9 (n thuộc N*)
Cho a,b thuộc N thỏa mãn .
7a+3b chia hết cho 23 .Chứng tỏ 4a+5b chia hết cho 23
Bày mình với
Ta có: 5(7a + 3b) : 23 = k (với k thuộc N)
=> 35a + 15b = 23k => 15b = 23k - 35a
Ta có: 3(4a + 5b) = 12a + 15b = 12a + 23k - 35a
= (-23a) + 23k = 23(-a + k)
Do 23(-a + k) ⋮ 23 => 3(4a + 5b) ⋮ 23 => 4a + 5b ⋮ 23 (đpcm)
B=3+32+33+...+3120. Chứng minh rằng:
a)B chia hết cho 3
b)B chia hết cho 4
c)B chia hết cho 13
Mọi người cho mình lời giải chi tiết nhé.
a: \(B=3+3^2+3^3+...+3^{120}\)
\(=3\left(1+3+3^2+...+3^{119}\right)⋮3\)
b: \(B=3+3^2+3^3+3^4+...+3^{2020}\)
\(=3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)
\(=4\cdot\left(3+...+3^{2019}\right)⋮4\)
Cho A = 2 + 22 + 23 ...+ 220 . Chứng minh rằng:
a) A chia hết cho 2
b) A chia hết cho 3
c) A chia hết cho 5
b) A=2+22+23+...+220
A=(2+22)+(23+24)+...+(219+220)
A=3.2+3.23+...+3.219
A=3.(2+23+25+...+219)
⇒A⋮3
phần c) làm tương tự