Cho a^4+b^4+c^4+d^4=4abcd với a,b,c,d lá số thực dương.CMR: a=b=c=d
Chứng minh với mọi a,b,c,d ta luôn có \(a^4+b^4+c^4+d^4\) ≥ 4abcd
Ta có:\(a^4;b^4;c^4;d^4\ge0;\forall a;b;c;d\)
Áp dụng BĐT AM-GM, ta có:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}\)
\(a^4+b^4+c^4+d^4\ge4abcd\) ( đfcm )
Cho a^4 + b^4 + c^4 + d^4 = 4abcd .Chứng minh a = b = c = d
cho a^4 +b^4 +c^4+d^4 =4abcd
CMR a=b=c=d
\(\left\{{}\begin{matrix}A=\left(a^4+b^4\right)\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left[\dfrac{\left(a+b\right)^2}{2}\right]^2}{2}\ge\dfrac{\left[\dfrac{4ab}{2}\right]^2}{2}\\B=\left(c^4+d^4\right)\ge\left(c^2+d^2\right)^2\ge\dfrac{\left[\dfrac{\left(c+d\right)^2}{2}\right]^2}{2}\ge\dfrac{\left[\dfrac{4cd}{2}\right]^2}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}A\ge\dfrac{\left(2ab\right)^2}{2}\\B\ge\dfrac{\left(2cd\right)^2}{2}\end{matrix}\right.\)(1)
\(\left\{{}\begin{matrix}A\ge0\\B\ge0\end{matrix}\right.\)(2)
(1) và (2) \(\Rightarrow A+B\ge\dfrac{\left(2ab\right)^2+\left(2cd\right)^2}{2}\ge\dfrac{2\left(4abcd\right)}{2}=4abcd\)
đẳng thức khi a=b=c=d
Ta có BĐT \(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)
Đẳng thức xảy ra khi \(\left(a-b\right)^2=0\Rightarrow a=b\)
Vậy ta có: \(a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\)
\(c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\)
Cộng theo vế 2 BĐT trên ta có:
\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left[\left(ab\right)^2+\left(cd\right)^2\right]\)
Lại có: \(\left(ab\right)^2+\left(cd\right)^2\ge2\sqrt{\left(ab\right)^2\left(cd\right)^2}=2abcd\)
\(\Rightarrow2\left[\left(ab\right)^2+\left(cd\right)^2\right]\ge2\cdot2abcd=4abcd\)
\(\Rightarrow VT=a^4+b^4+c^4+d^4\ge4abcd=VP\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a^4=b^4\\c^4=d^4\\\left(ab\right)^2=\left(cd\right)^2\end{matrix}\right.\Rightarrow\)\(\left\{{}\begin{matrix}a=b\\c=d\\ab=cd\end{matrix}\right.\)\(\Rightarrow a=b=c=d\)
cho a^4+b^4+c^4+d^4=4abcd.
Tính P= (1+a/b)(1+b/c)(1+c/d)(1+d/a)
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4\left|abcd\right|\ge4abcd\)
Dấu "=" xảy ra nên: \(a=b=c=d\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)\left(1+1\right)=16\)
Cho \(a^4+b^4+c^4+d^4=4abcd\) và a, b, c, d > 0 . Chứng minh: a = b = c = d
Với a,b,c,d >0\(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow a^4+b^4+c^4+d^4-4abcd=0\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(c^4-2c^2d^2+d^4\right)+\left(2a^2b^2+2c^2d^2-4abcd\right)=0\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2-2\left(a^2b^2-2abcd+c^2d^2\right)=0\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2-2\left(ab-cd\right)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(a^2-b^2\right)^2\ge0\forall a,b\\\left(c^2-d^2\right)^2\ge0\forall c,d\\\left(ab-cd\right)^2\ge0\forall a,b,c,d\end{matrix}\right.\)
Do đó: \(\left\{{}\begin{matrix}a^2-b^2=0\\c^2-d^2=0\\ab-cd=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\\ab=cd\end{matrix}\right.\Leftrightarrow a=b=c=d\left(\text{đ}pcm\right)\)
Tìm các số a;b;c;d thỏa mãn a+b+c+d=2016 và a4+b4+c4+d4=4abcd
Áp dụng BĐT Cauchy cho 4 số dương:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{\left(abcd\right)^4}=4abcd\)
(Dấu "="\(\Leftrightarrow a=b=c=d\))
\(\Rightarrow a=b=c=d=\frac{2016}{4}=504\)
Bài này em làm nhầm rồi nhé: chú ý: \(\sqrt[4]{\left(abcd\right)^4}=\left|abcd\right|\ne abcd\) nhé!
Chứng minh nếu a4+b4+c4+d4=4abcd và a,b,c,d là các số dương thì a=b=c=d
Cho a,b,c,d>0 và a4+b4+c4+d4=4abcd
Chứng minh: a=b=c=d
Ta áp dụng Cauchy 2 số
\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\left(a^2b^2+c^2d^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\cdot2abcd\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\)
Dấu = khi \(\begin{cases}a^4=b^4\\c^4=d^4\\a^2b^2=c^2d^2\end{cases}\)\(\Rightarrow a=b=c=d\)
Nhanh hơn có thể dùng Cauchy 4 số
\(a^4+b^4+c^4+d^4\ge4\cdot\sqrt[4]{a^4b^4c^4d^4}\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\)
Dấu = khi các biến bằng nhau
\(\Leftrightarrow a=b=c=d\)
Chứng minh rằng nếu \(a^4+b^4+c^4+d^4=4abcd\)
Và a, b, c, d là các số dương thì a=b=c=d
Áp dụng BĐT Cauchy, ta có:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4abcd\)
Dấu = xảy ra khi a=b=c=d
Vậy a=b=c=d