Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ha Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 4 2023 lúc 15:20

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: Xét ΔBAC có BD là phân giác

nen AD/BA=DC/BC

=>AD/3=DC/5=12/8=1,5

=>AD=4,5cm; DC=7,5cm

d: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

=>ΔAID cân tại A

Nguyên Thảo.
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 2 2022 lúc 7:27

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

DO đó: ΔABC∼ΔHBA

b: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5.4\left(cm\right)\)

Thanh Hoàng Thanh
26 tháng 2 2022 lúc 7:32

a) Xét \(\Delta ABC\) và \(\Delta HBA:\)

\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\\ \widehat{B}chung.\)

\(\Rightarrow\) \(\Delta ABC\sim\text{​​}\text{​​}\Delta HBA\left(g-g\right).\)

b) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right).\Rightarrow BC^2=9^2+12^2.\\ \Rightarrow BC=15\left(cm\right).\)

Xét \(\Delta ABC\) vuông tại A, đường cao AH:

\(AB^2=HB.BC\) (Hệ thức lượng).

\(\Rightarrow9^2=HB.15.\\ \Rightarrow HB=5,4\left(cm\right).\)

CantStopMaGaming
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2023 lúc 0:11

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5

=>AD=4,5cm; CD=7,5cm

d: góc ADI=90 độ-góc ABD

góc AID=góc BIH=90 độ-góc DBC

mà góc ABD=góc DBC

nên góc ADI=góc AID

=>ΔAID cân tại A

Duy Lộc
Xem chi tiết
Nguyễn Huy Tú
19 tháng 7 2021 lúc 15:18

A B C H 15 12

a, Xét tam giác ABH và tam giác CAH ta có : 

^AHB = ^CHA = 900

^BAH = ^HCA ( cùng phụ ^HAC )

Vậy tam giác ABH ~ tam giác CAH ( g.g )

b, Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago cho tam giác AHB vuông tại H 

\(AB^2=BH^2+AH^2\Rightarrow BH^2=AB^2-AH^2=225-144=81\Rightarrow BH=9\)cm 

* Áp dụng hệ thức : 

\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{144}{9}=16\)cm 

=> BC = HC + HB = 16 + 9 = 25 cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{12.25}{15}=20\)cm

Nguyễn Lê Phước Thịnh
20 tháng 7 2021 lúc 0:16

a) Xét ΔBHA vuông tại H và ΔAHC vuông tại H có 

\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)

Do đó: ΔBHA\(\sim\)ΔAHC(g-g)

Mèo đen cute
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 15:13

loading...

Huỳnh Thành Đạt
Xem chi tiết
Ashley
7 tháng 5 2023 lúc 14:32

loading...loading...

Do là mình chưa đọc kĩ đề nên là vẽ cạnh BH và CH nó bị sai tỉ lệ, bạn nên vẽ cạnh AC dài ra để hai cạnh đó đúng tỉ lệ nha.

Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2021 lúc 22:17

1) 

a) Xét ΔABC có 

\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)

Vậy: AH=3,6cm

b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)

hay CH=2,7(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH=BC-CH=7,5-2,7=4,8(cm)

Vậy: BH=4,8cm; CH=2,7cm

Edogawa Conan
1 tháng 7 2021 lúc 22:22

1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go 

=>\(\Delta ABC\) vuông tại A

Ta có: AB.AC=BC.AH

=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\)  (cm)

Edogawa Conan
1 tháng 7 2021 lúc 22:28

b)Ta có:AB2=BC.BH

  \(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{7,5}=4,8\) (cm)

Ta có:BH+CH=BC

     =>CH=BC-BH=7,5-4,8=2,7 (cm)

 

phương anh
Xem chi tiết
Asuna Yuuki
Xem chi tiết
hoac kiem hoa
9 tháng 3 2018 lúc 22:04

ngủ đi bạn ko ai giải cho đâu

Phan Thanh Trúc
9 tháng 3 2018 lúc 22:10

xin lỗi mk mới học lớp 5 thôi nên ko giải được!

Yuuki Asuna
9 tháng 3 2018 lúc 22:23

gocA= gocH (=90) 
GocB goc chug 
* tg ABC ~ tg HAC: 
gocA=gocH(=90) 
GocC la goc chug 
tu * va * suy ra: 
tg HBA~tg HAC 
b) su dug pytago tjh BH 
=> BH=9cm 
Xet tg ABC: 
AH^2=BH x CH 
=> CH=AH^2/BH 
=> CH=16cm 
su dug pytago trog tg HAC tjh AC 
=>AC=20cm 
c) xet tg HAC va tg FEC: 
AC/EC=HC/FC=4 
gocC la goc chug 
=>tg HAC ~ tg FEC (c_g_c) 
=> gocH =gocF= 90do 
vay CEF la tg vuog 
d) ta co tg ABC~tg HAC 
tg HAC~tg FEC 
=> tg ABC~ tg FEC 
=>CA/CF=CB/CE 
hay CA.CE=CE.CB (dpcm)

Chúc bạn học tốt !