Cho tam giác ABC có ba cạnh AB = 9cm, AC = 12cm, BC = 15cm
a) Chứng minh tam giác ABC vuông b) Tính đường cao AH, độ dài HB, HC
Tam giác ABC có AB= 9cm, AC=12cm, BC=15cm
a) Chứng minh tam giác ABC vuông tại A
b) Đường phân giác góc B cắt AC tại D. Tính độ dài AD, AC
c) Đường cao AH cắt BD tại I. Chứng minh AB.BI=BH2
d) Chứng minh tam giác AID cân
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: Xét ΔBAC có BD là phân giác
nen AD/BA=DC/BC
=>AD/3=DC/5=12/8=1,5
=>AD=4,5cm; DC=7,5cm
d: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AID=góc ADI
=>ΔAID cân tại A
cho tam giác ABC vuông tại a đường cao ah cạnh ab=9cm ,ac=12cm a,chứng minh tam giác ABC đồng dạng với tam giác HBA b,tính độ dài đoạn thẳng BC,HB
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
DO đó: ΔABC∼ΔHBA
b: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5.4\left(cm\right)\)
a) Xét \(\Delta ABC\) và \(\Delta HBA:\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\\ \widehat{B}chung.\)
\(\Rightarrow\) \(\Delta ABC\sim\text{}\text{}\Delta HBA\left(g-g\right).\)
b) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\Rightarrow BC^2=9^2+12^2.\\ \Rightarrow BC=15\left(cm\right).\)
Xét \(\Delta ABC\) vuông tại A, đường cao AH:
\(AB^2=HB.BC\) (Hệ thức lượng).
\(\Rightarrow9^2=HB.15.\\ \Rightarrow HB=5,4\left(cm\right).\)
Cho tam giác ABC có AB=9cm AC=12cm BC=15cm
a) Chứng minh tam giác ABC vuông
b) Đường phân giác của góc B cắt AC tại D, tính AD và DC.
c) Đường cao AH cắt BD tại I, chứng minh IH.BD=IA.IB
d) Chứng minh tam giác AID cân.
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5
=>AD=4,5cm; CD=7,5cm
d: góc ADI=90 độ-góc ABD
góc AID=góc BIH=90 độ-góc DBC
mà góc ABD=góc DBC
nên góc ADI=góc AID
=>ΔAID cân tại A
Cho tam giác abc vuông tại a có đường cao ah. Cho biết ab=15cm, ah=12cm a. Chứng minh tam giác abh, tam giác cha đồng dạng b. Tính độ dài đoạn thẳng hb, hc, ac
a, Xét tam giác ABH và tam giác CAH ta có :
^AHB = ^CHA = 900
^BAH = ^HCA ( cùng phụ ^HAC )
Vậy tam giác ABH ~ tam giác CAH ( g.g )
b, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác AHB vuông tại H
\(AB^2=BH^2+AH^2\Rightarrow BH^2=AB^2-AH^2=225-144=81\Rightarrow BH=9\)cm
* Áp dụng hệ thức :
\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{144}{9}=16\)cm
=> BC = HC + HB = 16 + 9 = 25 cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{12.25}{15}=20\)cm
a) Xét ΔBHA vuông tại H và ΔAHC vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)
Do đó: ΔBHA\(\sim\)ΔAHC(g-g)
Cho tam giác ABC vuông tại A có đường cao AH cho bt AB=15cm ; AH=12cm a, chứng minh tam giác AHB , tam giác C H A đồng dạng B, tính độ dài đoạn thẳng HB , HC , AC C, trên cạnh AC lấy điểm E sao cho CE=5cm; trên cạnh BC lấy điểm F sao cho CF=4cm . Chứng minh tam giác CEF vuông
Cho tam giác ABC vuông tại A kẽ đường cao AH a) Chứng minh ∆ABC~∆HAC b) Chứng minh AC bình phương = BC•HC c) Biết BH= 9cm HC= 16cm , tính độ dài các cạnh AB , AC
Do là mình chưa đọc kĩ đề nên là vẽ cạnh BH và CH nó bị sai tỉ lệ, bạn nên vẽ cạnh AC dài ra để hai cạnh đó đúng tỉ lệ nha.
1. Cho ∆ABC biết BC = 7.5cm, AC = 4.5cm, AB = 6cm.
a) ∆ABC là tam giác gì? Tính đường cao AH của ∆ABC.
b) Tính độ dài các cạnh BH, HC.
2. Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.
1)
a) Xét ΔABC có
\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:
\(AB\cdot AC=AH\cdot BC\)
\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)
Vậy: AH=3,6cm
b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)
hay CH=2,7(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BH=BC-CH=7,5-2,7=4,8(cm)
Vậy: BH=4,8cm; CH=2,7cm
1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go
=>\(\Delta ABC\) vuông tại A
Ta có: AB.AC=BC.AH
=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\) (cm)
b)Ta có:AB2=BC.BH
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{7,5}=4,8\) (cm)
Ta có:BH+CH=BC
=>CH=BC-BH=7,5-4,8=2,7 (cm)
cho tam giác abc đường cao ah ab=9cm,ac=12cm
a, chứng minh tam giac abc đồng dạng tam giác hac
b,chứng minh AC2=BC.HC
c,tính bc,hc,hb,ah
Bài 3: Cho tam giác ABC vuông tại A có đường cao AH .Cho biết AB=15cm, AH=12cm
a) Chứng minh tam giác AHB ~ tam giác CHA
b) Tính độ dài đoạn thẳng HB;HC;AC .
c) Trên cạnh AC lấy điểm E sao cho CE=5cm ;trên cạnh BC lấy điểm F sao cho CF=4cm. Chứng minh tam giác CE F vuông.
d) Chứng minh :CE.CA=CF
xin lỗi mk mới học lớp 5 thôi nên ko giải được!
gocA= gocH (=90)
GocB goc chug
* tg ABC ~ tg HAC:
gocA=gocH(=90)
GocC la goc chug
tu * va * suy ra:
tg HBA~tg HAC
b) su dug pytago tjh BH
=> BH=9cm
Xet tg ABC:
AH^2=BH x CH
=> CH=AH^2/BH
=> CH=16cm
su dug pytago trog tg HAC tjh AC
=>AC=20cm
c) xet tg HAC va tg FEC:
AC/EC=HC/FC=4
gocC la goc chug
=>tg HAC ~ tg FEC (c_g_c)
=> gocH =gocF= 90do
vay CEF la tg vuog
d) ta co tg ABC~tg HAC
tg HAC~tg FEC
=> tg ABC~ tg FEC
=>CA/CF=CB/CE
hay CA.CE=CE.CB (dpcm)
Chúc bạn học tốt !