Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b};x^2+y^2=1\). Chứng minh:
a) bx2 = ay2
b) \(\frac{x^{2008}}{a^{2004}}+\frac{y^{2008}}{b^{2004}}=\frac{2}{\left(a+b\right)^{1004}}\)
a) cho x,y dương. CMR: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
b) cho a+b+c=1 CMR: \(\frac{a}{a+b^2}+\frac{b}{b+c^2}+\frac{c}{c+a^2}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
a/ \(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b/ \(\frac{a}{a+b^2}=\frac{a}{a\left(a+b+c\right)+b^2}=\frac{a}{a^2+b^2+a\left(b+c\right)}\le\frac{a}{2ab+a\left(b+c\right)}=\frac{1}{b+b+b+c}\)
\(\Rightarrow\frac{a}{a+b^2}=\frac{1}{b+b+b+c}\le\frac{1}{16}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{16}\left(\frac{3}{b}+\frac{1}{c}\right)\)
Tương tự: \(\frac{b}{b+c^2}\le\frac{1}{16}\left(\frac{3}{c}+\frac{1}{a}\right)\) ; \(\frac{c}{c+a^2}\le\frac{1}{16}\left(\frac{3}{a}+\frac{1}{c}\right)\)
Cộng vế với vế:
\(VT\le\frac{1}{16}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(Cho A=\frac{1}{(x+y)^3}(\frac{1}{x^4+y^4})\) ;\(B=\frac{2}{(x+y)^4}(\frac{1}{x^3}-\frac{1}{y^3})\) :C=\(\frac{2}{(x+y)^5}(\frac{1}{x^2}-\frac{1}{y^2})\) Tính A+B+C \)
Cho \(\frac{x^{\text{4}}}{a}+\frac{y^{\text{4}}}{b}=\frac{1}{a+b};x^2+y^2=1\)
Chứng minh rằng:\(\frac{x^{200\text{4}}}{a^{1002}}+\frac{y^{200\text{4}}}{b^{1002}}=\frac{2}{\left(a+b\right)^{102}}\)
Ta có:
\(x^2+y^2=1\Rightarrow\left(x^2+y^2\right)^2=1\)(1)
Thay (1) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)ta có:
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)
\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+2x^2y^2+y^4\right).ab\)
\(\Leftrightarrow x^4ab+x^4b^2+y^4a^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)
\(\Leftrightarrow x^4b^2+y^4a^2=2x^2y^2ab\)
\(\Leftrightarrow\left(x^2b\right)^2-2x^2y^2ab+\left(y^2a\right)^2=0\)
\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\)
\(\Leftrightarrow x^2b-y^2a=0\)
\(\Leftrightarrow x^2b=y^2a\)
\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\left(\frac{x^2}{a}\right)^{1002}=\left(\frac{y^2}{b}\right)^{1002}=\left(\frac{1}{a+b}\right)^{1002}\)
\(\Rightarrow\frac{x^{2004}}{a^{1002}}=\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}\)
\(\Rightarrow\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}+\frac{1}{\left(a+b\right)^{1002}}=\frac{2}{\left(a+b\right)^{1002}}\left(đpcm\right)\)
Chúc bạn học tốt!
Cho \(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right);B=\frac{1}{\left(x+y\right)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}\right);C=\frac{1}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)\)
a) Rút gọn tổng A+B+C
b) Tính tổng A+B+C tại x=2016;y=2017
Ta có:
\(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)=\frac{1}{\left(x+y\right)^3}.\frac{\left(y^2+x^2\right)\left(x+y\right)\left(y-x\right)}{x^4y^4}=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}\)
\(B=\frac{1}{\left(x+y\right)^4}.\left(\frac{1}{x^3}-\frac{1}{y^3}\right)=\frac{\left(y-x\right)\left(y^2+xy+x^2\right)}{\left(x+y\right)^4x^3y^3}\)
\(C=\frac{1}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)=\frac{y-x}{\left(x+y\right)^4x^2y^2}\)
\(\Rightarrow A+B+C=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}+\frac{\left(y-x\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)^4x^3y^3}+\frac{\left(y-x\right)}{\left(x+y\right)^4x^2y^2}\)
\(=\frac{y^3-x^3}{x^4y^4\left(x+y\right)^2}\)
b/ Thế vô rồi tính nhé
Đoạn gần cuối thay y-x= 1 luôn
\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2x^4y^4}+\left(\frac{\left(x+y\right)^2}{\left(x+y\right)^4\left(xy\right)^3}\right)\\ \)
\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2\left(xy\right)^4}+\frac{1}{\left(x+y\right)^2\left(xy\right)^3}\)
\(A+B+C=\frac{x^2+y^2+xy}{\left[\left(x+y\right)xy\right]^2\left(xy\right)^2}\) giờ mới thay không biết đã tối giản chưa
\(Cho A=\frac{1}{(x+y)^3}(\frac{1}{x^4+y^4})\) ;\(B=\frac{2}{(x+y)^4}(\frac{1}{x^3}-\frac{1}{y^3})\) :C=\(\frac{2}{(x+y)^5}(\frac{1}{x^2}-\frac{1}{y^2})\)
Tính A+B+C
1,Cho abc=1. Cho:\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\)=\(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\)
cm: a=b=c=1
2, cho a+b=x+y và a4+b4=x4+y4. cm an+bn=xn+yn
Ngọc Anh Dũngo0oNguyễno0oHuy hoàng indonaca0o0 khùng mà 0o0Tình bạn vĩnh cửu Phương DungHacker Mũ Trắng
Cái đề là \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}???\)
1. Cho 3 số dương x, y, z thỏa mãn x+y+z=1. TÌM GTNN của biểu thức: A=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
2. Cho a, b,c>0 và a+b+c=3. Tìm GTNN của biểu thức S=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
3. CHo x,y,z là 3 số thực dương thỏa mãn đk: x+y+z≤ 6.
CM: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) ≥ \(\frac{3}{2}\).
4. Cho 4 số dương a, b,c, d . CMR \(a^4+b^4+c^4+d^4\) ≥ 4abcd.
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+y+z)\geq (1+1+1)^2\)
\(\Leftrightarrow A.1\geq 9\Leftrightarrow A\geq 9\)
Vậy GTNN của $A$ là $9$. Giá trị này đạt được tại $x=y=z=\frac{1}{3}$
Bài 2:
Hoàn toàn tương tự bài 1
$S(a+b+c)\geq (1+1+1)^2$ theo BĐT Bunhiacopxky
$\Leftrightarrow S.3\geq 9\Rightarrow S\geq 3$
Vậy GTNN của $S$ là $3$ khi $a=b=c=1$
Bài 3:
Áp dụng BĐT Bunhiacopxky như các bài trên ta có:
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$
Mà $0< x+y+z\leq 6$ nên $\frac{9}{x+y+z}\geq \frac{9}{6}=\frac{3}{2}$
Do đó $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}$ (đpcm)
Dấu "=" xảy ra khi $x=y=z=2$
Bài 4:
Áp dụng BĐT Cô-si cho các số dương ta có:
$a^4+b^4+c^4+d^4\geq 4\sqrt[4]{a^4b^4c^4d^4}=4abcd$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=d>0$
Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) và \(x^2+y^2=1\) . CMR: \(\frac{x^{4038}}{a^{2019}}+\frac{y^{4038}}{b^{2019}}=\frac{2}{\left(a+b\right)^{2019}}\).
Cho các số thực a, b, x, y thõa mãn: \(x^2+y^2=1;\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)
Chứng minh \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=\frac{2}{\left(a+b\right)^n},\forall n\in N\)
áp dụng bđt svacxơ, ta có
\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)
dấu = xảy ra <=>\(\frac{x^2}{a}=\frac{y^2}{b}\)
nên \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=2.\frac{x^{2n}}{a^n}\)
,mặt khác, ta có \(\frac{2}{\left(a+b\right)^n}=2.\frac{1}{\left(a+b\right)^n}=2.\frac{\left(x^2+y^2\right)^n}{\left(a+b\right)^n}=2.\frac{\left(2.x^2\right)^n}{\left(2.a\right)^n}=2.\frac{2^2.x^{2n}}{2^2.a^n}=2.\frac{x^{2n}}{a^n}\)
từ 2 điều trên => \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=\frac{2}{\left(a+b\right)^n}\)
Cho \(x^2+y^2=1\)và \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)
CMR:\(\frac{x^6}{a^3}+\frac{y^6}{b^3}=\frac{2}{\left(a+b\right)^3}\)
đợi chị tý
chị giúp em chị làm bài này cái đã
đợi chị làm
ukm
nguồn : Kỳ thi HSG toán 8 năm 2018-2019