Tìm các số nguyên x biết:
a,x+(x+1)+(x+2)+...+2006+2007=2007
b,2000+1999+...+x+1+x=2000
Bài 12: Tính :
a) A = 1 + (-3) + 5 + ( - 7) +….+ 17 + ( -19);
b) B = (- 2) + 4 + (-6) + 8 + …+ ( - 18) + 20;
c) C = 1 + (-2) + 3 + (-4) + ….+ 1999 + ( - 2000) + 2001;
Bài 13: Tìm số nguyên x, biết:
a) –x + 20 = -(-15) –(+8) + 13
b) –(-10) + x = -13 + (-9) + (-6)
Bài 13:
a: =>20-x=15-8+13=20
hay x=0
Tìm x biết :
a) x + ( x + 1 ) + ( x + 2) + ........+ ( x + 2006 ) +2007 =2007
b) 2000+ ( 199 +x ) + ( 198 + x ) + ( x + 1 ) + x = 200
a) x + ( x + 1 ) + ( x + 2 ) + ... + ( x + 2006 ) + 2007 = 2007
\(\Rightarrow\)( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 2006 + 2007 ) = 2007
\(\Rightarrow\)2007x + 2015028 = 2007
\(\Rightarrow\)2007x = 2007 - 2015028 = -2013021
\(\Rightarrow\)x = ( -2013021 ) : 2007 = -1003
Vậy x = -1003
b) 2000 + ( 199 + x ) + ( 198 + x ) + ... + ( x + 1 ) + x = 200
\(\Rightarrow\)( x + x + x + ... + x + x ) + ( 1 + 2 + ... + 198 + 199 + 2000 ) = 200
\(\Rightarrow\)200x + 2001000 = 200
\(\Rightarrow\)200x = 200 - 2001000 = -2000800
\(\Rightarrow\)x = ( -2000800 ) : 200 = -10004
Vậy x = -10004
a, x + ( x + 1 ) + ( x + 2 ) + ..... + ( x + 2006) + 2007 = 2007
x. 2007 + ( 1 + 2 + ..... + 2006 ) = 2007 - 2007
x. 2007 + 2013021 = 0
x. 2007 = 0 - 2013021
x.2007 = - 2013021
x = ( - 2013021 ) : 2007
x = - 1003
a) x + ( x + 1 ) + ( x + 2) + ........+ ( x + 2006 ) +2007 =2007
(x+x+x+...+x)+(1+2+3+...+2007) =2007
2007.x + [(2007+1).2007 : 2] =2007
2007.x +2015028 =2007
2007.x =2007-2015028
x =(-2013021) : 2007
x = -1003
Vây x = -1003
Tính nhanh : 2007 x 2000 - 31 / 1975 + 1999 x 2006
Tìm số nguyên x biết rằng x+(x+1)+...+(1999+2000)=2000
x+1/2009+x+2/2008+x+3/2007=x+10/2000+x+11/1999+x+12/1998
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\Rightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+1010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)=\left(x+2010\right)\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}\right)\)
\(\Rightarrow x+2010=0\) vì \(0< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}< \frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}\)
\(\Rightarrow x=-2010\)
Bài giải
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)+\left(\frac{x+12}{1998}+1\right)\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-(\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998})=0\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
\(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
Vì \(\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)\ne0\) nên \(x+2010=0\)
\(x=0-2010=-2010\)
Phan Uyên Nhi
Bạn bấm vào câu hỏi tương tự rồi tham khảo nha !
Có rất nhiều bài giống bài của bạn hỏi đó !
x+1/2009 + x+2/2008 + x+3/2007 + x=10/2000 + x==11/1999 + x+12/1998
\(\dfrac{x+1}{2009}+\dfrac{x+2}{2008}+\dfrac{x+3}{2007}=\dfrac{x+10}{2000}+\dfrac{x+11}{1999}+\dfrac{x+12}{1998}\)
\(\Rightarrow\left(\dfrac{x+1}{2009}+1\right)+\left(\dfrac{x+2}{2008}+1\right)+\left(\dfrac{x+3}{2007}+1\right)=\left(\dfrac{x+10}{2000}+1\right)+\left(\dfrac{x+11}{1999}+1\right)+\left(\dfrac{x+12}{1998}+1\right)\)
\(\Rightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}=\dfrac{x+2010}{2000}+\dfrac{x+2010}{1999}+\dfrac{x+2010}{1998}\)\(\Rightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}-\dfrac{x+2010}{2000}-\dfrac{x+2010}{1999}-\dfrac{x+2010}{1998}=0\)\(\Rightarrow\left(x+2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2007}-\dfrac{1}{2000}-\dfrac{1}{1999}-\dfrac{1}{1998}\right)=0\)\(\Rightarrow x+2010=0\Rightarrow x=-2010\)
1/(x+2000)(x+2001) + 1/(x+2001)(x+2002) +1/(x+2002)(x+2003) +........+ 1/(x+2006)(x+2007)= 7/8
TÌm x và y thõa mãn
(x + y)^2006 + 2007[x - 1] = 0
[x - y - 5] + 2007(y - 3)^2008 = 0
3(x- 2y)^2004 + 4[y +1 phần 2 ] = 0
[x + 3y - 1] + (2y - 1 phần 2 )^2000 = 0
mình ko viết dc phân số nên viết 1 phần 2 ai giải dc sẽ like
Tìm x
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\Leftrightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)+\left(\frac{x+12}{1998}+1\right)\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
\(\Leftrightarrow x+2010=0\)
\(\Leftrightarrow x=-2010\)