1+2+3+...+14=?
1/3-(-2/7+1/3)
(-2/7+14/11)(-1/14+14/-11)
1/3-(-2/7+1/3)
= 1/3 + 2/7 - 1/3
= (1/3 - 1/3) + 2/7
= 2/7
\(\frac{1}{2}\cdot\frac{18}{14}+\frac{1}{2}\cdot\frac{3}{14}-\frac{1}{2}\cdot\frac{7}{14}\)
\(=\frac{1}{2}\left(\frac{18}{14}+\frac{3}{14}-\frac{7}{14}\right)\)
\(=\frac{1}{2}\cdot1=\frac{1}{2}\)
tính nhanh
a)1/4+1/5+3/4+2/5
b)2/7+5/14+1/7+3/14
\(a:=\left(\dfrac{1}{4}+\dfrac{3}{4}\right)+\left(\dfrac{1}{5}+\dfrac{2}{5}\right)\\ =1+\dfrac{3}{5}=1\dfrac{3}{5}\\ b:=\left(\dfrac{2}{7}+\dfrac{1}{7}\right)+\left(\dfrac{5}{14}+\dfrac{3}{14}\right)\\ =\dfrac{3}{7}+\dfrac{8}{14}\\ =\dfrac{3}{7}+\dfrac{4}{7}=1\)
Tính bằng cách thuận tiện nhất :
2/3 × 3/14+1/7×2/3+3/14×2
A. 2/5 + 3/5 : 3/10 x 1/2
B.5/6 - 2/3 x 13/14 + 1/14
a: \(=\dfrac{2}{5}+\dfrac{3}{5}\cdot\dfrac{10}{3}\cdot\dfrac{1}{2}=\dfrac{2}{5}+\dfrac{10}{5}\cdot\dfrac{1}{2}=\dfrac{2}{5}+1=\dfrac{7}{5}\)
Chứng minh: 1+14+142+143+...+1414 chia hết cho 3.
Đặt A=1+14+142+143+...+1414
A=1+14+142+143+...+1414=(1+14)+(142+143)+...+(1413+1414)
A=(1+14)+142x(1+14)+...+1413x(1+14)
A=15+142x15+...+1413x15
A=15x(1+142+...+1413)
Vì 15 chia hết cho 3=>Vậy A chia hết cho 3(dpcm)
Đề bài có đúng không vậy nếu bỏ số 1 hoặc số 1414 thì mình làm được
Này nhé. Nói cho mà biết muốn thì tự mà làm,liu liu?
TÌM X:
(x+1) :(3/1*2+3/2*3+3/3*4+.........+3/14*15)=1và 1/14
| 7 - 3/4 . x | - 3/2 = 1/1/2
5 - | x - 3 | = 5
| 7/2 - 42 | + 14 = 14
2/3 - | x + 2 | = 2
5/6 . | 3 - x | + 4 = 2
Giải giúp mình với
|7 - \(\dfrac{3}{4}\)\(x\)| - \(\dfrac{3}{2}\) = \(\dfrac{1}{\dfrac{1}{2}}\)
|7 - \(\dfrac{3}{4}x\)| - \(\dfrac{3}{2}\) = 2
|7 - \(\dfrac{3}{4}\)\(x\)| = 2 + \(\dfrac{3}{2}\)
|7 - \(\dfrac{3}{4}x\)| = \(\dfrac{7}{2}\)
\(\left[{}\begin{matrix}7-\dfrac{3}{4}x=\dfrac{7}{2}\\7-\dfrac{3}{4}x=-\dfrac{7}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}\dfrac{3}{4}x=7-\dfrac{7}{2}\\\dfrac{3}{4}=7+\dfrac{7}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{7}{2}\\\dfrac{3}{4}x=\dfrac{21}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{14}{3}\\x=14\end{matrix}\right.\)
5 - |\(x-3\)| = 5
|\(x-3\)| = 5 - 5
|\(x-3\)| = 0
\(x-3\) = 0
\(x\) = 3
|\(\dfrac{7}{2}\) - 42| + 14 = 14 ( vô lý xem lại đề bài nhé em)
\(\dfrac{2}{3}\) - |\(x+2\)| = 2
|\(x+2\)| = \(\dfrac{2}{3}\) - 2
|\(x+2\)| = - \(\dfrac{4}{3}\)
|\(x+2\)| ≥ 0 ∀ \(x\)
Vậy \(x\in\) \(\varnothing\)
Chứng tỏ:
a, 3/2*5 + 3/5*8 + 2/8*11 + 3/11*14 +3/14*17 + 3/17*20 < 1/2
b, 1/2^2 + 1/3^2 +...+ 1/100^2 < 1
a) Đặt \(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}< \frac{1}{2}\)
Vậy A<\(\frac{1}{2}\).
b) Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B< 1-\frac{1}{100}< 1\)
Vậy \(B< 1\).