Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
©ⓢ丶κεη春╰‿╯
Xem chi tiết
zZz Cool Kid_new zZz
5 tháng 2 2019 lúc 22:28

Theo đề ra,ta có:

\(3xy-2y=x^2+5\)

\(\Rightarrow y\left(3x-2\right)=x^2+5\left(1\right)\)

Do x,y nguyên nên \(x^2+5⋮3x-2\)

\(\Rightarrow9\left(x^2+5\right)⋮3x-2\)

\(\Rightarrow9x^2+45⋮3x-2\)

\(\Rightarrow9x^2-6x+6x-4+49⋮3x-2\)

\(\Rightarrow3x\left(3x-2\right)+2\left(3x-2\right)+49⋮3x-2\)

\(\Rightarrow49⋮3x-2\)

\(\Rightarrow3x-2\in\left\{49;7;1;-7;-1;-49\right\}\)

\(\Rightarrow3x\in\left\{51;9;3;-5;1;-47\right\}\)

\(\Rightarrow x\in\left\{1;3;7\right\}\)vì \(x\in Z\)

Với \(x=1\)thay vào \(\left(1\right)\),ta được y=6

Tương tự thì với \(x=3\Rightarrow y=2;x=7\Rightarrow y=6\)

Vậy các cặp số \(\left(x;y\right)\)thỏa mãn điều kiện trên là:\(\left(1;6\right);\left(3;2\right);\left(7;6\right)\)

P/S:bài giải dài,nếu không có gì sai sót quá nghiêm trọng thì mong mọi người bỏ qua cho.

©ⓢ丶κεη春╰‿╯
24 tháng 2 2018 lúc 17:25

Ta có:3xy-5=x\(^2\) +2y

⇒3xy-2y=x \(^2\)+5   (1)

Vì x,y là số nguyên nên:x\(^2\) +5 chia hết cho 3x-2

=>9(x^2+5) chia hết cho 3x-2 9x^2+45 chia hết cho3y-2

=>9x^2-6x+6x-4+49 chia hêt cho 3x-2

=>3x(3x-2)+2(3x-2)+49 chia hết cho 3x-2

=>46 chia hết cho 3x-2

=>3x-2 ∈ (49;-49;7;-7;1;-1)

<=>3x ∈ (51;-47;9;-5;3;1)

<=>x ∈ (1;3;17)

Thay x lần lượt vào (1) ta được y=6 hoặc y=2

Vậy y=2 hoặc y=2 

p/s : kham khảo

Anh2Kar六
27 tháng 2 2018 lúc 22:14

Ta có:3xy-5=x2+2y

⇒3xy-2y=x2+5               (1)

Vì x,y là số nguyên nên:x2+5 chia hết cho 3x-2
=>9(x^2+5) chia hết cho 3x-2
9x^2+45 chia hết cho3y-2
=>9x^2-6x+6x-4+49 chia hêt cho 3x-2
=>3x(3x-2)+2(3x-2)+49 chia hết cho 3x-2
=>46 chia hết cho 3x-2
=>3x-2 ∈ (49;-49;7;-7;1;-1)
<=>3x ∈ (51;-47;9;-5;3;1)
<=>x ∈ (1;3;17)
Thay x lần lượt vào (1) ta được y=6 hoặc y=2
Vậy y=2 hoặc y=2

Mai Thanh Tâm
Xem chi tiết
ngọc
Xem chi tiết
Dark_Hole
19 tháng 2 2022 lúc 20:51

Tham khảo tại đây nhé: Tìm x, y nguyên thoả 3xy-5=x^2+2y - Tay Thu (hoc247.net)

Illyasviel
Xem chi tiết
Yêu nè
3 tháng 1 2020 lúc 14:26

Bạn tham khảo nè 

https://olm.vn/hoi-dap/detail/222735820244.html

Học tốt

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
3 tháng 1 2020 lúc 19:59

\(x+2y=3xy+3\)

\(x-3xy+2y-3=0\)

\(y\left(2-3x\right)+x-3=0\)

\(-3y\left(2-3x\right)-3x+9=0\)

\(-3y\left(2-3x\right)+2-3x=-7\)

\(\left(2-3x\right)\left(1-3y\right)=-7\)

đến đây dễ rồi bn giải tiếp nha 

Khách vãng lai đã xóa
Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 4 2022 lúc 1:12

\(x^2+3x+5=xy+2y\\ \Leftrightarrow x^2+3x-xy-2y+5=0\\ \Leftrightarrow x\left(x+2\right)-y\left(x+2\right)+\left(x+2\right)+3=0\\ \Leftrightarrow\left(x+2\right)\left(x-y+1\right)=-3=\left(-1\right)\cdot3=\left(-3\right)\cdot1\)

\(TH_1:\left\{{}\begin{matrix}x+2=-3\\x-y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-5\end{matrix}\right.\to\left(-5;-5\right)\\ TH_2:\left\{{}\begin{matrix}x+2=3\\x-y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\to\left(1;3\right)\\ TH_3:\left\{{}\begin{matrix}x+2=1\\x-y+1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\to\left(-1;3\right)\\ TH_4:\left\{{}\begin{matrix}x+2=-1\\x-y+1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-5\end{matrix}\right.\to\left(-3;-5\right)\)

Vậy \(\left(x;y\right)=\left(-5;-5\right);\left(1;3\right);\left(-1;3\right);\left(-3;-5\right)\)

Cô Nàng Lạnh Lùng
Xem chi tiết
Hà Thị Quỳnh
30 tháng 5 2016 lúc 12:41

Ta có \(3xy-5=x^2+2y\)

\(\Rightarrow3xy-2y=x^2+5\)

\(\Rightarrow y\left(3x-2\right)=x^2+5\)(1)

Vì x , y nguyên nên \(x^2+5\) chia hết cho \(3x-2\)

\(\Rightarrow9\left(x^2+5\right)\) chia hết cho \(3x-2\)

\(\Rightarrow9x^2+45\) chia hết cho \(3x-2\) 

\(\Rightarrow9x^2-6x+6x-4+49\) chia hết cho \(3x-2\)

\(\Rightarrow3x\left(3x-2\right)+2\left(3x-2\right)+49\) chia hết cho \(3x-2\)

\(\Rightarrow49\) chia hết cho \(3x-2\)

\(\left(3x-2\right)\in\text{Ư(49)=}\left(49;-49;7;-7;1;-1\right)\)

\(\Rightarrow3x\in\text{ }\left(51;-47;9;-5;3;1\right)\)

\(\Rightarrow x\in\text{ }\left(17;-\frac{47}{3};3;-\frac{5}{3};1;\frac{1}{3}\right)\)

Mà x nguyên 

\(\Rightarrow x\in\left(17;3;1\right)\)

Thay lần lượt vào (1) ta được y=2 ; y=6 

Vậy cặp số nguyên (x,y) cần  tìm ...

Thangzmb Le
4 tháng 3 2019 lúc 20:08

thanh kill ???????????????????????????????????????????????????????????????!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

lethuyhang
Xem chi tiết
Su Su
3 tháng 11 2019 lúc 9:39

Viết lại các câu sau cho nghĩa không đổi

       1. My room is smaller than your room.

      Your room is bigger than my room.

       2. No house on the street is older than this house.

       This house isthe oldest on the street.

       3. Quang is 1.75 meters tall. Vinh is 1.65 tall.

       Vinh is shorter than Quang

       4. Hang is the fattest girl in my class.

       No girl in my class is fatter than Hang

Khách vãng lai đã xóa
Sakura
Xem chi tiết
Nguyễn Trọng Chiến
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2020 lúc 0:00

1.

\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)

\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)

\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)

Đặt \(xy=a\Rightarrow0< a\le1\)

\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)

\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)

\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)

\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)

\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)

\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)

Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)

Nguyễn Việt Lâm
26 tháng 12 2020 lúc 0:08

2.

Đặt \(A=9^n+62\)

Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)

Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)

\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)

Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\)  và \(6m+1\)

\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)

\(\Leftrightarrow36m^2=9^n+63\)

\(\Leftrightarrow4m^2=9^{n-1}+7\)

\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)

\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)

Pt ước số cơ bản, bạn tự giải tiếp