S= 1/21+1/22+1/23+1/24+.........+1/150. So sanh S với 5/4
GIÚP MIK VỚI
S =1 / 21 + 1/ 22 + 1/ 23 + ... + 1 / 149 + 1 / 150
hãy so sánh S với 3/ 4
Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)
Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)
\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)
\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)
Xét tổng S gồm 20 số hạng:
S=1/1×2×3×4+1/2×3×4×5+...+1/20×21×22×23.
Hãy so sánh tổng S với 1/18
cậu ko giúp cậu ấy thì thôi đừng bảo như thế
cho s=1+2+22+23+24+...+299 so sánh S với 2100
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
\(S=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+\frac{1}{25}+\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+\frac{1}{29}+\frac{1}{30}\)\(\frac{1}{30}\)
Hãy so sánh S với \(\frac{1}{3}\)
ta có 1/3=10/30
1/21+1/22+...+1/30 có 10 p/số
mà 1/21>1/30
1/22>1/30
....
1/29>1/30
1/30=1/30
=>1/21+..1/30>1/30+....1/30 có 10 phân số
=>1/21+...1/30>1/3
Ta có: \(\frac{1}{21}< \frac{1}{30}\)
\(\frac{1}{22}< \frac{1}{30}\)
......
\(\frac{1}{29}< \frac{1}{30}\)
\(\Rightarrow S< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)(có 10 p/s)
\(\Rightarrow S< \frac{1}{30}.10=\frac{10}{30}=\frac{1}{3}\)
Vậy S < 1/3
ta co 1/21+1/22+1/23>3/30
1/24+1/25+1/26>3/30
1/27+1/28+1/29>3/30
==>S>3/30+3/30+3/30+1/30
S>10/30 hay S>1/3
S=5/20+5/21+5/22+5/23+5/24 HÃY CHỨNG MINH S>1
Ta có: \(\frac{5}{20}>\frac{5}{25}\)
\(\frac{5}{21}>\frac{5}{25}\)
\(\frac{5}{22}>\frac{5}{25}\)
\(\frac{5}{23}>\frac{5}{25}\)
\(\frac{5}{24}>\frac{5}{25}\)
=> \(S>\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}=5\cdot\frac{5}{25}=\frac{25}{25}=1\)
Vậy S > 1
Ta có :
\(\frac{5}{20}>\frac{5}{25}\)
\(\frac{5}{21}>\frac{5}{25}\)
\(\frac{5}{22}>\frac{5}{25}\)
\(\frac{5}{23}>\frac{5}{25}\)
\(\frac{5}{24}>\frac{5}{25}\)
\(\Rightarrow S>\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}=5\cdot\frac{5}{25}=\frac{25}{25}=1\)
Vậy \(S>1\)
B=1\1×2×3×4+1\2×3×4×5+.....+1\21×22×23×24
So sánh B với 1\18
Giải giúp mik câu này với ạ, mik cần gấp
So sánh: A=19^21+1/19^22+1 và B=19^22+1/19^23+1
ý bạn là như này đk?
A=1921+1:1922+1
B=1922+1:1923+1
Chứng minh:
S= 5/20 + 5/21 + 5/22 + 5/23 + 5/24 > 1
Ta có :
\(\frac{5}{20}>\frac{5}{25}\)
\(\frac{5}{21}>\frac{5}{25}\)
\(\frac{5}{22}>\frac{5}{25}\)
\(\frac{5}{23}>\frac{5}{25}\)
\(\frac{5}{24}>\frac{5}{25}\)
\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>5.\frac{5}{25}=1\)
\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>1\)
ta có S=5/20+5/21+5/22+5/23+5/24>5/25+5/25+5/25+5/25+5/25=5/25*5=1
=>đpcm
S = 1/5 +1/21+1/22+1/23+1/24+1/25+1/101+1/102+1/103+1/104+1/105<1/2
vi 1/5+5/21+5/101 <1/5+5/20+5/100=1/2=> S<1/2