phân tích đa thức sau thành nhân tử
27x^3-1/1\27
phân tích các đa thức sau thành nhân tử : x^3+y^3+1/27 -xy
Phân tích các đa thức sau thành nhân tử:
a) \(8{x^3} - 1\)
b) \({x^3} + 27{y^3}\)
c) \({x^3} - {y^6}\)
`a, 8x^3 - 1 = (2x-1)(4x^2 + 2x - 1)`
`b, x^3 + 27y^3 = (x+3y)(x^3 - 3xy + 9y^2)`
`c, x^3 - y^6 = (x-y^2)(x+xy^2 + y^4)`
Phân tích các đa thức sau thành nhân tử:
1. \(x^3-x^2+5x+125\)
2. \(x^2+2x^2-6x-27\)
1.
= (x^3 + 125 ) -(x^2 +5x)
=(x +5) (x^2 -5x +25) -x(x+5)
=(x+5)(x^2 -5x +25 -x)
=(x+5)(x^2 -6x +25)
2.
= (x^3 -27) + (2x^2 -6x)
=(x-3) (x^2 +3x +9) +2x (x-3)
=(x-3) (x^2 +3x +9 +2x)
=(x-3) (x^2 +5x +9)
phân tích đa thức sau thành nhân tử -x^3+9x^2-27x+27
\(-x^3+9x^2-27x+27=\left(3-x\right)^3\)
\(-x^3+9x^2-27x+27\)
\(=-x^3+3x^2+6x^2-18x-9x+27\)
\(=-x^2\left(x-3\right)+6x\left(x-3\right)-9\left(x-3\right)\)
\(=-\left(x-3\right)\left(x^2-6x+9\right)\)
\(=-\left(x-3\right)\left(x-3\right)^2\)
\(=\left(3-x\right)^3\)
Phân tích đa thức thành nhân tử
8x^3-\(\dfrac{1}{27}\)
\(\dfrac{1}{8}\)a^3-125b^6
125+(a-b)^3
a) \(8x^3-\dfrac{1}{27}=\left(2x-\dfrac{1}{3}\right)\left(4x^2+\dfrac{2}{3}x+\dfrac{1}{9}\right)\)
b) \(\dfrac{1}{8}a^3-125b^6=\left(\dfrac{1}{2}a-5b^2\right)\left(\dfrac{1}{4}a+\dfrac{5}{2}ab^2+25b^4\right)\)
c) \(125+\left(a-b\right)^3=\left(5+a-b\right)\left(25-5a+5b+a^2-2ab+b^2\right)\)
Phân tích các đa thức sau thành nhân tử
1, 8x^3 - 4x^2 + 2/3x - 1/27
2, x^4 - 4x^3-7x^2 + 35x-24
Phân tích đa thức sau thành nhân tử: x3 – 4x2 – 12x + 27
x3 – 4x2 – 12x + 27
(Nhóm để xuất hiện nhân tử chung)
= (x3 + 27) – (4x2 + 12x)
= (x3 + 33) – (4x2 + 12x)
(nhóm 1 là HĐT, nhóm 2 có 4x là nhân tử chung)
= (x + 3)(x2 – 3x + 9) – 4x(x + 3)
= (x + 3)(x2 – 3x + 9 – 4x)
= (x + 3)(x2 – 7x + 9)
Phân tích các đa thức sau thành nhân từ:
a) 5 x 2 - 10xy + 5 y 2 - 20 z 2 ;
b) x 3 + 3 x 2 +3x + 1 - 27 z 3 ;
c) 2 x 2 - 5x + 3;
d) 16x4 -72x2 + 81.
phân tích đa thức sau thành nhân tử
\((\)x ^2-3x-1)^2-12(x^2-3x-1)+27
Đặt \(x^2-3x-1=a\)thay vào biểu thức ta được :
\(a^2-12a+27\)
\(=a^2-3a-9a+27\)
\(=a\left(a-3\right)-9\left(a-3\right)\)
\(=\left(a-3\right)\left(a-9\right)\)(1)
Thay \(a=x^2-3x-1\)vào (1) ta được :
\(\left(x^2-3x-1-3\right)\left(x^2-3x-1-10\right)\)
\(=\left(x^2-3x-4\right)\left(x^2-3x-11\right)\)
Bạn Châu sai đáp án cuối
phải là (x2-3x-4)(x2-3x-10) nha