y=-1/3 x^3 +2x^2+(2m+1)x-3m+2 nghịch biến trên R
Bài 1 : Định m để hàm số
1. Y=2x^3-3(2m+1)x^2 + 6m(m+1) Đồng biến trên khoảng (2; dương vô cùng)
2. Y= x^3+ (m-1)x^2 -(2m^2 +3m+2)x Nghịch biến trên (2; dvc)
tìm các giá trị của m để hàm số sau
a) \(y=-x^3-\left(m+1\right)x^2+3\left(m+1\right)x\) nghịch biến trên R
b) \(y=-\dfrac{1}{3}x^3+mx^2-\left(2m+3\right)x\) nghịch biến trên R
a: \(y=-x^3-\left(m+1\right)x^2+3\left(m+1\right)x\)
=>\(y'=-3x^2-\left(m+1\right)\cdot2x+3\left(m+1\right)\)
=>\(y'=-3x^2+x\cdot\left(-2m-2\right)+\left(3m+3\right)\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(-2m-2\right)^2-4\cdot\left(-3\right)\left(3m+3\right)< =0\\-3< 0\end{matrix}\right.\)
=>\(4m^2+8m+4+12\left(3m+3\right)< =0\)
=>\(4m^2+8m+4+36m+36< =0\)
=>\(4m^2+44m+40< =0\)
=>\(m^2+11m+10< =0\)
=>\(\left(m+1\right)\left(m+10\right)< =0\)
TH1: \(\left\{{}\begin{matrix}m+1>=0\\m+10< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=-1\\m< =-10\end{matrix}\right.\)
=>\(m\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}m+1< =0\\m+10>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< =-1\\m>=-10\end{matrix}\right.\)
=>-10<=m<=-1
b: \(y=-\dfrac{1}{3}x^3+mx^2-\left(2m+3\right)x\)
=>\(y'=-\dfrac{1}{3}\cdot3x^2+m\cdot2x-\left(2m+3\right)\)
=>\(y'=-x^2+2m\cdot x-\left(2m+3\right)\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-1< 0\\\left(2m\right)^2-4\cdot\left(-1\right)\cdot\left(-2m-3\right)< =0\end{matrix}\right.\)
=>\(4m^2+4\left(-2m-3\right)< =0\)
=>\(m^2-2m-3< =0\)
=>(m-3)(m+1)<=0
TH1: \(\left\{{}\begin{matrix}m-3>=0\\m+1< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=3\\m< =-1\end{matrix}\right.\)
=>\(m\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}m-3< =0\\m+1>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< =3\\m>=-1\end{matrix}\right.\)
=>-1<=m<=3
Câu 1: Cho hàm số y = 3(m + 2)x - 3m + 1. Tìm để hàm số nghịch biến trên R
Câu 2: Cho hàm số y = mx(x + 1) - m(x + 2)\(^2\), xác định giá trị của m hàm số đồng biến trên R
Câu 3: Cho hàm số y = mx\(^2\) - 2x - mx(x - 2m) + 3, xác định giá trị của m để hàm số nghịch biến trên R
1.
Hàm nghịch biến trên R khi và chỉ khi:
\(3\left(m+2\right)< 0\Leftrightarrow m+2< 0\Leftrightarrow m< -2\)
2.
\(y=mx^2+mx-mx^2-4mx-4m=-3mx-4m\)
Hàm đồng biến trên R khi và chỉ khi \(-3m>0\Leftrightarrow m< 0\)
3.
\(y=mx^2-2x-mx^2+2m^2x+3=\left(2m^2-2\right)x+3\)
Hàm nghịch biến trên R khi và chỉ khi
\(2m^2-2< 0\Leftrightarrow m^2< 1\Leftrightarrow-1< m< 1\)
Tìm m để hàm số y = - 2x^2- (2m - 1)x + 6 - 3m nghịch biến trong khoảng (-2 ; dương vô cùng)
Xét parabol \(\left(C_m\right):y=-2x^2-\left(2m-1\right)x+6-3m\), ta có \(\Delta=\left[-\left(2m-1\right)\right]^2-4\left(-2\right)\left(6+3m\right)=4m^2+20m+49\)
Gọi \(I_m\) là đỉnh của \(\left(C_m\right)\) thì \(I_m\left(\dfrac{-2m+1}{4};\dfrac{4m^2+20m+49}{8}\right)\)
Để hàm số đã cho nghịch biến trong khoảng \(\left(-2;+\infty\right)\) thì \(\dfrac{-2m+1}{4}=-2\Leftrightarrow m=\dfrac{9}{2}\)
Tao đéo biết thằng Nguyễn Huy Hung nha ☹
Để hàm số nghịch biến trên \(\left(-2;+\infty\right)\)
\(\Rightarrow\left(-2;+\infty\right)\subset\left(\dfrac{1-2m}{4};+\infty\right)\)
\(\Rightarrow\dfrac{1-2m}{4}\ge-2\)
\(\Rightarrow m\le\dfrac{9}{2}\)
Tìm tất car các giá trị thực của tham số m để hs y= \(\dfrac{m}{3}.x^3-\left(m+1\right).x^2+\left(m-2\right).x-3m\) nghịch biến trên R.
\(y'=mx^2-2\left(m+1\right)x+m-2\)
- Với \(m=0\) ko thỏa mãn
- Với \(m\ne0\) bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m+1\right)^2-m\left(m-2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\4m+1\le0\end{matrix}\right.\) \(\Rightarrow m\le-\dfrac{1}{4}\)
Cho hàm số y = ( 32 - 3m + 2 )x - 1. Tìm m để
a. Hàm số đồng biến trên R
b. Hàm số nghịch biến trên R
Tìm `m` để hàm số \(y=\dfrac{m^2}{3-4m}x+3m-2\) nghịch biến trên `R`.
Để đây là hàm số bậc nhất thì \(\dfrac{m^2}{3-4m}< >0\)
=>\(m\notin\left\{0;\dfrac{3}{4}\right\}\)
Để hàm số \(y=\dfrac{m^2}{3-4m}x+3m-2\) nghịch biến trên R thì
\(\dfrac{m^2}{3-4m}< 0\)
=>3-4m<0
=>-4m<-3
=>\(m>\dfrac{3}{4}\)
Tìm tất cả giá trị của m để các hàm số sau thỏa mãn yêu cầu bài toán đã chỉ ra.
a) y=(m2-3m+2)x-3m+1 là một hàm số bậc nhất.
b) y=3x-2+(2x-3)m là một hàm số bậc nhất.
c) y=(2m-3)x-m+3 nghịch biến trên R.
d) y=3m(x+1)-(7x+1) tăng trên R
GIÚP MIK VỚI.
a/ Để hàm là bậc nhất
\(\Rightarrow m^2-3m+2\ne0\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)
b/ \(y=\left(2m+3\right)x-3m-2\)
Để hàm là bậc nhất \(\Rightarrow2m+3\ne0\Rightarrow x\ne-\frac{3}{2}\)
c/ Để hàm nghịch biến trên R
\(\Rightarrow2m-3< 0\Rightarrow m< \frac{3}{2}\)
d/ \(y=\left(3m-7\right)x+3m-1\)
Để hàm tăng trên R \(\Rightarrow3m-7>0\Rightarrow m>\frac{7}{3}\)
Tìm m để y = (2m + 1).x + 3 nghịch biến trên R
Để hàm số y = (2m + 1).x + 3 nghịch biến trên R
\(\Rightarrow2m+1< 0\)
\(\Leftrightarrow2m< -1\)
\(\Leftrightarrow m< -\frac{1}{2}\)