CMR A=2n+6n+8n+9n chia hết cho 5 khi và chỉ khi n không chia hết cho 4
CMR: a ) (5n+7)(4n+6)chia hết cho 2
b) (8n+1)(6n+5) không chia hết cho2
c) n(n+1)(2n+1)chia hết cho 6
CMR nếu với mọi n thuộc N
a) (5n+7)(4n+6) chia hết cho 2
b) (8n+1)(6n+5) ko chia hết 2
c) n.(n+1)(2n+1) chia hết cho 6
a) \(\left(5n+7\right)\left(4n+6\right)\)
\(=\left(5n+7\right)4n+\left(5n+7\right)6\)
\(=20n^2+28n+30n+32\)
\(=20n^2+58n+32\)
Vì \(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)
b) \(\left(8n+1\right)\left(6n+5\right)\)
\(=\left(8n+1\right)6n+\left(8n+1\right)5\)
\(=48n^2+6n+40n+5\)
\(=48n^2+46n+5\)
Vì \(\left(48n^2+46n\right)⋮2\) mà \(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)
c) \(n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n-2\right)\)
\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\) và \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)
CMR A=2^n+6^n+8^n+9^n chia hết cho 5 khi và chỉ khi n không chia hết cho 4
Tìm n sao cho:
a) 8n-59 chia hết cho 2n-16
b) 8n-44 chia hết cho 2n-12
c) 6n-46 chia hết cho 2n-18
a, Ta có 8n - 59 = ( 2n -16 ) + ( 2n -16 ) + ( 2n - 16 ) + ( 2n - 16 ) + 5
2n - 16 luôn luôn chia hết cho 2n - 16
=> 4.(2n-16) chia hết cho 2n-16 <=> 5 chia hết cho 2n - 16
=> 2n - 16 thuộc Ư(5) = { 1;-1;5;-5 }
Tự làm nốt
b, tương tự
c, 6n - 46 = (2n-18) + (2n-18) + (2n-18) + 8
... Tiếp tục :))
a ,\(8n-59⋮2n-16\)
Mà \(2n-16⋮2n-16\)
\(\Rightarrow4\left(2n-16\right)⋮2n-16\)
\(\Rightarrow8n-64⋮2n-16\)
\(\Rightarrow\left(8n-59\right)-\left(8n-64\right)⋮2n-16\)
\(\Rightarrow8n-59-8n+64⋮2n-16\)
\(\Rightarrow5⋮2n-16\)
\(\Rightarrow2n-16\inƯ\left(5\right)\)
\(\Rightarrow2n-16\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow2n\in\left\{17;15;21;11\right\}\)
\(\Rightarrow\) KHÔNG CÓ SỐ NÀO THỎA MÃN CỦA 2n
\(\Rightarrow x\in\varnothing\)
Tìm n biết :
a. (2n+3) chia hết cho (6n-4)
b. (3n+9)chia hết cho (9n+3)
\(a,2n+3⋮6n+4\Leftrightarrow6n+9⋮6n+4\Leftrightarrow6n+9-6n-4⋮6n-4\Leftrightarrow5⋮6n-4\Leftrightarrow6n-4\in\left\{-5;5;1;-1\right\}\Leftrightarrow6n\in\left\{-1;9;5;-3\right\}\Leftrightarrow n\in\left\{-\dfrac{1}{6};1,5;\dfrac{5}{6};-0,5\right\}\)
Tìm số nguyên n sao cho :
a)6n+5 chia het cho 3n-1
b)2n-1 chia hết cho n+1
c)9n-1 chia hết cho 9-n
a) \(\Rightarrow\left(6n+5\right)-2\left(3n-1\right)⋮3n-1\)
\(\Rightarrow\left(6n+5\right)-\left(6n-2\right)⋮3n-1\)
\(\Rightarrow6n+5-6n+2⋮3n-1\)
\(\Rightarrow7⋮3n-1\)
\(\Rightarrow3n-1\inƯ\left(7\right)=\left(1;-1;7;-7\right)\)
ta có bảng sau :
3n-1 1 -1 7 -7
n L 0 L -2
mà \(n\in Z\)
\(\Rightarrow n\in\left(0;-2\right)\)
b) \(\Rightarrow\left(2n-1\right)-2\left(n+1\right)⋮n+1\)
\(\Rightarrow\left(2n-1\right)-\left(2n+2\right)⋮n+1\)
\(\Rightarrow2n-1-2n-2⋮n+1\)
\(\Rightarrow-1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(-1\right)=\left(1;-1\right)\)
ta có bảng sau
n+1 1 -1
n 0 -2
mà \(n\in Z\)
KL :\(n\in\left(0;-2\right)\)
c) \(\Rightarrow\left(9n-1\right)+9\left(9-n\right)⋮9-n\)
\(\Rightarrow\left(9n-1\right)+\left(81-9n\right)⋮9-n\)
\(\Rightarrow9n-1=81-9n⋮9-n\)
\(\Rightarrow80⋮9-n\)
\(\Rightarrow9-n\inƯ\left(80\right)=\left(1;-1;2;-2;4;-4;8;-8;10;-10;5;-5;20;-20;40;-40;80;-80\right)\)
ta có bảng sau :
9 - n 1 -1 2 -2 4 -4 5 -5 8 -8 10 -10 20 -20 40 -40 80 -80
n 8 10 7 11 5 13 4 14 1 17 -1 19 -11 29 -31 49 -71 89
Mà \(n\in Z\)
\(\Rightarrow n\in\left(8;10;7;11;5;13;4;14;1;17;-1;19;-11;29;-31;49;-71;89\right)\)
CMR : 2n-1 chia hết cho 7 khi và chỉ khi n chia hết cho 3(n thộc N*)
Chứng minh rằng
a) với x;y thuộc N,CMR: 5*x+47*y chia hết cho 17 khi và chỉ khi x+6*y chia hết cho 17
b) với x;y thuộc N,CMR: x+2*y chia hết cho 5 khi và chỉ khi 3*x+16*y chia hết cho 5
a/
\(x+6y⋮17\Rightarrow5\left(x+6y\right)=5x+30y⋮17\)
\(5x+47y=\left(5x+30y\right)+17y\)
\(5x+30y⋮17\left(cmt\right);17y⋮17\Rightarrow5x+47y⋮17\)
b/
\(3x+16y⋮5\Rightarrow2\left(3x+16y\right)=6x+32y=\left(5x+30y\right)+\left(x+2y\right)⋮5\)
Mà \(5x+30y⋮5\Rightarrow x+2y⋮5\)
a) CMR: ( n^2+n-1)^2 chia hết cho 24 với mọi số nguyên n
b) CMR: n^3+6n^2 +8n chia hết cho 48 với mọi số n chẵn
c) CMR : n^4 -10n^2 +9 chia hết cho 384 với mọi số n lẻ