Chứng minh bất đẳng thức: \(\frac{a^2}{b}+\frac{c^2}{d}\ge\frac{\left(a+b\right)^2}{b+d}\)
Chứng minh bất đẳng thức: \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)\ge\left(a+c\right)\left(b+d\right)\)
Sửa đề: a,b,c,d>0
C/m: \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+c\right)\left(c+d\right)\)
Áp dụng BĐT AM-GM ta có:
\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2=\left[\frac{\left(a+c\right)+\left(b+d\right)}{2}\right]^2\ge\left[\frac{2.\sqrt{\left(a+c\right)\left(b+d\right)}}{2}\right]^2=\left(a+c\right)\left(b+d\right)\)
Dấu " = " xảy ra <=> a+c=b+d
Chứng minh các bất đẳng thức sau:
1. \(\frac{3}{a+b}+\frac{2}{c+d}+\frac{a+b}{\left(a+c\right)\left(b+d\right)}\ge\frac{12}{a+b+c+d}\)
2. \(\frac{\left(a+b\right)^2}{a+b-c}+\frac{\left(b+c\right)^2}{-a+b+c}+\frac{\left(c+a\right)^2}{a-b+c}\ge4.\left(a+b+c\right)\)
Chứng minh các bất đẳng thức sau:
a,\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+c\right)\left(b+d\right)\)
b, \(ab+bc+ca\le0\)khi a+b+c=0
Áp dụng bất đẳng thức Cauchy để chứng minh các bất đẳng thức sau đây với a,b,c là các số thực dương
a) \(\left(ab+c^2\right)\left(bc+a^2\right)\left(ca+b^2\right)\ge abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
b) \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}+1\)
CHUYÊN ĐỀ BẤT ĐẲNG THỨC
1, Cho a,b,c >0 Chứng minh \(\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(c+a\right)^2}\ge\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\)
Chứng minh bất đẳng thức
\(\frac{^{a^2+b^2+c^2}}{3}\ge\left(\frac{a+b+c}{3}\right)^2\)
Xét hiệu
\(\frac{a^2+b^2+c^2}{3}-\left(\frac{a+b+c}{3}\right)^2\)
\(=\frac{a^2+b^2+c^2}{3}-\frac{\left(a+b+c\right)^2}{9}\)
\(=\frac{3\left(a^2+b^2+c^2\right)}{9}-\frac{a^2+b^2+c^2+2ab+2bc+2ac}{9}\)
\(=\frac{1}{9}\left[3\left(a^2+b^2+c^2\right)-a^2-b^2-c^2-2ab-2bc-2ac\right]\)
\(=\frac{1}{9}\left(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ac\right)\)
\(=\frac{1}{9}\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)
\(=\frac{1}{9}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]\)
\(=\frac{1}{9}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\) \(\ge0\)
Vậy \(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\)
Dấu "=" xảy ra <=> a=b=c
\(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\Leftrightarrow\frac{a^3+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Leftrightarrow3a^2+3b^2+3c^2\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ac\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Các phép biến đổi là tương đương suy ra đpcm. \("="\Leftrightarrow a=b=c\)
chứng minh rằng nếu a,b,c là các số thỏa mãn các bất đẳng thức :\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\ge\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\)
thì \(\left|a\right|=\left|b\right|=\left|c\right|\)
Đặt M; N; P như sau:
\(M=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge N=\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\ge P=\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}.\)
1./ Xét hiệu: M - P
\(M-P=\frac{a^2-b^2}{a+b}+\frac{b^2-c^2}{b+c}+\frac{c^2-a^2}{c+a}=a-b+b-c+c-a=0\)
=> M = P
2./ Bất đẳng thức \(M\ge N\ge P\)có \(M=P\)=> \(M=N=P\)
3./ Khi M = N, ta có hiệu: M - N = 0 nên:
\(\frac{a^2-c^2}{a+b}+\frac{b^2-a^2}{b+c}+\frac{c^2-b^2}{c+a}=0\)
\(\Leftrightarrow\frac{\left(a^2-c^2\right)\left(b+c\right)\left(c+a\right)+\left(b^2-a^2\right)\left(a+b\right)\left(a+c\right)+\left(c^2-b^2\right)\left(a+b\right)\left(c+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow a^4+b^4+c^4=a^2b^2+b^2c^2+c^2a^2\)(1)
Mặt khác ta luon có bất đẳng thức: \(\Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)dấu "=" khi a2 = b2 = c2
Do đó để xảy ra đẳng thức (1) thì a2 = b2 = c2 hay |a| = |b| = |c|. ĐPCM
Làm thì mình nghĩ mình làm dc nhưng có cái giờ phải đi học rồi . Nếu tối nay chưa ai trả lời mình sẽ trả lời
chứng minh bất đẳng thức
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Đề phải cho x,y,z ; a,b,c >0 chứ bạn ơi
Xét A = (a^2/x + b^2/y + c^2/z) . (x+y+z) = [(a/\(\sqrt{x}\))^2+(b/\(\sqrt{y}\))^2+(c/\(\sqrt{z}\))^2 . (\(\sqrt{x}\)2 + \(\sqrt{y}\)2 + \(\sqrt{z}\)2)
Áp dụng bđt bunhiacopxki ta có :
A >= (a/\(\sqrt{x}\).\(\sqrt{x}\)+b/\(\sqrt{y}\).\(\sqrt{y}\)+c/\(\sqrt{z}\).\(\sqrt{z}\))^2 = (a+b+c)^2
=> a^2/x + b^2/y + c^2/z >= (a+b+c)^2/x+y+z
=> ĐPCM
k mk nha
Nhầm chỗ \(\sqrt{z}\)2 nha . đó là \(\sqrt{z}\)2
k mk nha
Dùng bất đẳng thức Schwarz chứng minh bất đẳng thức sau:
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(VT=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\dfrac{a^2}{ab+ca}+\dfrac{b^2}{ab+bc}+\dfrac{c^2}{ca+bc}\ge\left(Schwarz\right)\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Mà theo Cô-si ta có:
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) (hằng đẳng thức)
\(\Rightarrow VT\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c
Đặt b + c = x ; c + a = y ; a + b = z
=> a = (y + z - x) / 2 ; b = (x + z - y) / 2 ; c = (x + y - z) / 2
=> P = a/b+c + b/c+a + c/a+b = (y + z - x) / 2x + (x + z - y) / 2y + (x + y - z) / 2z
= 1/2. (y/x + z/x - 1 + x/y + z/y - 1 + x/z + y/z - 1) = 1/2. (x/y + y/x + x/z + z/x + y/z + z/y - 3)
Áp dụng BĐT A/B + B/A ≥ 0 hoặc Cô-si cũng được
=> P ≥ 1/2. (2 + 2 + 2 - 3) = 3/2 (đpcm)
Dấu = xảy ra <=> x = y = z <=> b+c = c+a = a+b <=> a = b = c