Cho tứ giác ABCD có các tia phân giác góc A và góc B vuông góc với nhau
CM: tứ giác ABCD là hình thang
Cho tứ giác ABCD có các tia phân giác của góc A và góc D vuông góc với nhau. Chứng minh rằng:
a) Tứ giác ABCD là hình thang.
b) Hai tia phân giác của góc B và góc C cũng vuông góc với nhau.
Cho tứ giác ABCD có các tia phân giác góc A và góc B vuông góc với nhau
CM: tứ giác ABCD là hình thang
HOK TOT
cho tứ giác ABCD có các tia phân giác của góc A và D vuông góc với nhau . Chứng minh rằng
a, tứ giác ABCD là hình thang
b, 2 tia phân giác góc B và C vuông góc
Giả sử tia phân giác của góc A và D cắt nhau tại E
ta có : \(\widehat{EAD}+\widehat{EDA}=90^0\Leftrightarrow\frac{1}{2}\widehat{ADC}+\frac{1}{2}\widehat{DAB}=90^0\)
Hay \(\widehat{ADC}+\widehat{DAB}=180^0\) vậy hai góc trên là hai goc bù nhau nên AB//CD
b. tương tự câu a, nếu gọi F là giao điểm của tia phân giác của B và C.
ta có
\(\widehat{ABC}+\widehat{BCD}=180^0\Rightarrow\widehat{FBC}+\widehat{FCB}=90^0\Rightarrow\widehat{BFC}=90^0\)
Vậy BF vuông góc với FC
cho tứ giác ABCD có các tia phân giác góc A và góc D vuông góc với nhau. Chứng Minh:
a) ABCD là hình thang
b) 2 tia phân giac góc D và góc C vuông góc với nhau
cho tứ giác ABCD có các tia phân giác góc A và góc D vuông góc với nhau. Chứng Minh:
a) ABCD là hình thang
b) 2 tia phân giac góc D và góc C vuông góc với nhau
Cho tứ giác ABCD có các tia phân giác của góc A và D vuông góc với nhau tại E
a) Tứ giác ABCD là hình gì? Chứng minh
b) Các tia phân giác của các góc B và C cắt nhau tại F. Các tia phân giác của các góc ngoài đỉnh A và D cắt nhau tại M. Các tia phân giác của các góc ngoài đỉnh B và C cắt nhau tại N. Chứng minh 4 điểm M,N,E,F thẳng hàng
c) Cho biết AB = a, BC = b, CD = c, DA= d (a,b,c,d có cùng đơn vị độ dài). CMR: Nếu a+c=b+d thì E trùng với F
Giúp em với ạ, vẽ hình giúp em nhé. Cảm ơn mn ạ
Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.
Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.
Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.
Bài 4: a)Tính số đo của các góc trong tứ giác ABCD, biết góc A:góc B:góc C:góc D=2:2:1:1.
b)Tứ giác ABCD là hình gì?Vì sao?
Bài 5:Cho tam giác ABC cân tại A. Kẻ các phân giác BD,CE của các góc B và C.
a)Cm: Tam giác ADB= tam giác AEC.
b)Cm: Tứ giác BEDC là hình thang cân có cạnh bên bằng 1/2 đáy.
Bài 6:Cho tam giác ABC vuông tại A có góc ABC=60 độ. Kẻ tia Ax song song với BC.Trên tia Ax lấy điểm D sao cho AD=BC.
a) Tính số đo các góc BAD và BAC.
b)Cm tứ giác ABCD là hình thang cân.
Mình đang cần gấp nên mong các bạn giải giùm mình. ^-^
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
B1, Cho tứ giác ABCD có các tia p/giác của góc A và góc D vuông góc với nhau.Chứng minh:
a)ABCD là hình thang
b) Hai tia phân giác của góc C và D vuông góc với nhau
Giúp mik với gấp lắm!
Cho tứ giác A,B,C,D có số đo của các góc A,B,C,D lần lượt tỉ lệ với 1,2,3,4. CMR
a) Tứ giác ABCD là hình thang
b)2 tia phân giác góc A và góc D vuông góc với nhau, 2 tia phân giác góc B và C vuông góc với nhau
a) Xét tứ giác ABCD có
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)(Định lí tổng bốn góc trong một tứ giác)
mà \(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^0}{10}=36^0\)
Do đó: \(\widehat{A}=36^0;\widehat{B}=72^0;\widehat{C}=108^0;\widehat{D}=144^0\)
Ta có: \(\widehat{B}+\widehat{C}=180^0\)
mà hai góc này là hai góc trong cùng phía
nên AB//CD(dấu hiệu nhận biết hai đường thẳng song song)
hay ABCD là hình thang
Câu 32. Cho tứ giác ABCD có AB//CD và góc A= góc B , hãy chọn khẳng định đúng
A. Tứ giác ABCD là hình bình hành.
B. Tứ giác ABCD là hình thang cân.
C. Tứ giác ABCD là hình thang vuông.
D. Tứ giác ABCD có góc bằng nhau.