Tính các góc của hình thang ABCD biết AB song song với CD và góc A = 2 góc D, góc B -Góc C = 20 độ
cho hình thang abcd có ab song song với cd tính các góc của hình thang biết góc a bằng 2 lần góc c góc a bằng góc d +40 độ
do AB song song với CD nên ta có \(A+D=180^0\text{ mà }A=D+40^0\Rightarrow D+40^0+D=180^0\Rightarrow\hept{\begin{cases}D=70^0\\A=110^0\end{cases}}\)
\(\Rightarrow C=\frac{A}{2}=55^0\Rightarrow B=180^0-55^0=125^0\)
Bài 1: Cho hình thang ABCD ( AD song song BC) . Biết góc A - góc B = 20° , góc A + góc C = 150°. Tính các góc của hình thang
Bài 2: Cho hình thang ABCD, biết góc A = góc B = 90° và AB = BC = 1/2 AD
a. Tính các góc của hình thang
b. Chứng minh AD vuông góc với CD
c. Tính chu vi của hình thang nếu AB = 3 cm
Cho hình thang ABCD (Ab song song với CD) và góc B = 60 độ
a) Tính góc A
b) Biết góc B/5 = góc D/4. Tính góc B và góc C
Cho hình thang ABCD (AB song song với CD). Biết góc A – D= 30độ; góc B=2C. Tính các góc của hình thang(vẽ hình)
Vì AB//CD nên \(\left\{{}\begin{matrix}\widehat{A}+\widehat{D}=180^0\\\widehat{B}+\widehat{C}=180^0\end{matrix}\right.\left(trong.cùng.phía\right)\)
Mà \(\widehat{A}-\widehat{D}=30^0;\widehat{B}=2\widehat{C}\Rightarrow\left\{{}\begin{matrix}\widehat{A}=\left(180^0+30^0\right):2=105^0\\\widehat{D}=180^0-105^0=75^0\\3\widehat{C}=180^0\end{matrix}\right.\)
\(\Rightarrow\widehat{C}=60^0\Rightarrow\widehat{B}=120^0\)
1.cho hình thang ABCD biết góc A=góc B=90 độ AB=BC=1/2AD
a, tính các góc của hình thang
b,cm AC vuông góc với CD
c, tính chu vi của hình thang biết AB=3cm
2.cho hình thang ABCD (AB SONG SONG CD)trong đó đáy CD=BC+AD
CMR 2 tia phân giác của góc A VÀ GÓC B cắt nhau tại 1 điểm thuộc cạnh đáy CD
GIÚP MK NHA THANKS CÁC BN NHÌU MOAH
Bài 2:
Gọi AI là phân giác của góc BAD
Xét ΔDAI có góc DAI=góc DIA
nên ΔDIA cân tại D
=>DA=DI
=>CB=CI
=>ΔCBI cân tại C
=>góc CBI=góc CIB
=>góc CBI=góc ABI
=>BI là phân giác của góc ABC(ĐPCM)
BÀI 2; Cho hình thang ABCD có đáy là AB và CD.
A, Biết góc B - góc C = 30 độ và góc A = 3 góc D. tính các góc của hình thang
B, Biết góc B - góc C = 40 độ và góc C - góc D= 20 ĐỘ. tính các góc của hình thang
BÀI 2; Cho hình thang ABCD có đáy là AB và CD.
A, Biết góc B - góc C = 30 độ và góc A = 3 góc D. tính các góc của hình thang
Giải: Vì AB // CD
=> A + D =180o
mà A = 3D => 3D + D = 180o
=> 4D = 180o
=> D = 45o => A = 135o
Ta có: AB // CD => B + C = 180o
mà B - C = 30o hay B = C + 30o
=> C + 30o + C = 180o
=> 2C = 150o => C = 75o => B = 105o
Cho hình thang ABCD (AB Song song CD)
Biết góc A =3.góc D và góc B-góc C = 30 độ
Tính góc A, góc B , góc C, góc D
Giải giúp nhá
Đúng = tick
góc A+D=180độ(1)
góc A=3*D(2)
từ 2 suy ra 180 độ +gócD thay thế vào 1
góc A+góc D+3D=180 độ
góc 4D=180 độ
góc 4D=180/4=45 ĐỘ
góc B=45*3=135 độ
cm tưng tự
Cho hình thang ABCD (AB//CD). Các đường phân giác ngoài của góc A và D cắt nhau tại E, các đường phân giác ngoài của góc B và góc C cắt nhau tại F. Chứng minh:
a) EF song song với AB và CD.
b) EF có độ dài bằng nửa chu vi hình thang ABCD
a) Gọi M và N lần lượt là giao điểm của AE, BF với CD.
Ta có: A D E ^ = 1 2 D ^ ngoài, D A E ^ = 1 2 A ^ ngoài.
Mà A ^ ngoài + D ^ ngoài = 1800 (do AB//CD)
⇒ A D E ^ + D A E ^ = 90 0 , tức là tam giác ADE vuông tại E.
Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.
Chứng minh tương tự, ta được F olaf trung điểm của BN.
Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM
b) Từ ý a), EF = 1 2 ( A B + B C + C D + D A )
a:
góc AMD=180 độ-góc MAD-góc MDA
\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)
\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)
Gọi giao của AM với DC là M'
Xét ΔDM'A có
DM là đường cao, là đường phân giác
nên ΔDM'A cân tại D
=>M là trung điểm của AM'
Gọi giao của BN với DC là N'
Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)
\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)
\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)
=90 độ
Xét ΔCN'B có
CN vừa là đường cao, vừa là phân giác
nên ΔCN'B cân tại C
=>N là trug điểm của BN'
Xét hình thang ABN'M' có
M,N lần lượt là trung điểm của AM' và BN'
nen MN là đường trung bình
=>MN//CD//AB
b: MN=(AB+M'N')/2
=(AB+M'D+CD+CN')/2
mà M'D=AD và CN'=CB
nên MN=(AB+CD+AD+CB)/2
cho hình thang ABCD( AD song song BC; AD>BC) đường chéo AC vuông góc với cạnh bên CD góc BAC bằng góc CAD và góc D bằng 60 độ a) CMR: ABCD là hình thang cân b) Tính độ dài cạnh đáy AD biết chu vi hìnhbthang bằng 20 cm