Tìm x y z biết x ^2+y^2+z^2=2x+2y+2z+3
Tìm x,y,z biết
\(\frac{x}{2y+2z+z}=\frac{y}{2x+2z+1}=\frac{z}{2x+2y-2}=2.\left(x+y+z\right)\)
Tìm x, y,z : x/2y+2z+1=y/2x+2z+1=z/2x+2y-2=2. (x+y+z)
\(\frac{2}{x+y+z}=\frac{x}{2y+2z+1}=\frac{y}{2x+2z+1}=\frac{z}{2x+2y-2}=\frac{x+y+z}{4\left(x+y+z\right)}=\frac{1}{4}\)
\(\Rightarrow\hept{\begin{cases}2y+2z+1=4x\\2x+2z+1=4y\\x+y+z=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{17}{6}\\z=\frac{7}{3}\end{cases}}\)
1) Tìm x,y,z biết
x/3=y/4=z/5 và 2x2+2y2 -3z2=-100
2) Giá trị của y, biết :
2/3x=1/2y=2/z và 3x+2y+z=1
3) Tìm x, y, z, biết
2x=y, 3y=2x và 4x-3y+2z=36
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
x/(2y+2z+1)=y/(2x+2z+1)=z/(2x+2y-2)=2.(x+y+z)
Tìm z,x,y
vote cho mk nhé ok
Tìm x,y,z biết 3x/5=2y/7=2z/3 và 2x^2-y^2-z^2=-160
3x/5=2y/7=2z/3
=>x/5/3=y/7/2=z/3/2
=>x/10=y/21=z/9=k
=>x=10k; y=21k; z=9k
2x^2-y^2-z^2=-160
=>2*100k^2-441k^2-81k^2=-160
=>k^2=80/161
TH1: k=căn 80/161
\(x=10\sqrt{\dfrac{80}{161}};y=21\sqrt{\dfrac{80}{161}};z=9\sqrt{\dfrac{80}{161}}\)
TH2: \(k=-\sqrt{\dfrac{80}{161}}\)
=>\(x=-10\sqrt{\dfrac{80}{161}};y=-21\sqrt{\dfrac{80}{161}};z=-9\sqrt{\dfrac{80}{161}}\)
Tìm x,y,z biết:
\(\frac{x}{2y+2z+1}=\frac{y}{2x+2z+1}=\frac{z}{2x+2y-2}=2\left(x+y+z\right)\)
cho 2x - y = 1 ; 2y - z = 2 ; 2z - x = 3 .Tìm T biết T = x + z + y .
Theo đề bài ta có: 2x-y=1; 2y-z=2; 2z-x = 3
=> (2x-y)+(2y-z)+(2z-x) = 1+2+3
2x-y+2y-z+2z-x = 6
(2x-x)+(2y-y)+(2z-z) = 6
=> x+y+z = 6 = T
Vậy T = x+y+z = 6.
cho x+y+z=3 tìm gtnn P=x^2/x+2y^3+y^2/y+2z^3+z^2/z+2x^3
Ta có:\(\dfrac{x^2}{x+2y^3}=\dfrac{x\left(x+2y^3\right)-2xy^3}{x+2y^3}=x-\dfrac{2xy^3}{x+2y^3}=x-\dfrac{2xy^3}{x+y^3+y^3}\)
\(\ge x-\dfrac{2xy^3}{3\sqrt[3]{xy^6}}=x-\dfrac{2}{3}.\sqrt[3]{\dfrac{x^3y^9}{xy^6}}=x-\dfrac{2}{3}.y\sqrt[3]{x^2}\)
\(\Rightarrow P\ge\left(x+y+z\right)-\dfrac{2}{3}.\left(y\sqrt[3]{x^2}+z\sqrt[3]{y^2}+x\sqrt[3]{z^2}\right)\)
Ta có:\(y\sqrt[3]{x^2}=y\sqrt[3]{x.x.1}\le y.\dfrac{\left(x+x+1\right)}{3}=\dfrac{2}{3}.xy+\dfrac{y}{3}\)
\(\Rightarrow P\ge\left(x+y+z\right)-\dfrac{2}{3}\left[\dfrac{2}{3}\left(xy+yz+zx\right)+\dfrac{x+y+z}{3}\right]\)
\(\ge\left(x+y+z\right)-\dfrac{2}{3}\left[\dfrac{2}{3}.\dfrac{\left(x+y+z\right)^3}{3}+\dfrac{z+y+z}{3}\right]\)
\(=3-\dfrac{2}{3}\left[\dfrac{2}{3}\cdot\dfrac{3^3}{3}+\dfrac{3}{3}\right]=3-\dfrac{2}{3}.3=1\)
Dấu "=" xảy ra ⇔ x=y=z=1
Cho x,y,z >0 / x^2 +y^2 +z^3 =3.,
Tìm max P= x/ (x^2 +2y+3) + y/(y^2 +2z+3) +z/(z^2 + 2x +3)