Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Quốc Thịnh
Xem chi tiết
YangSu
25 tháng 6 2023 lúc 14:00

\(A=\left(\dfrac{3x-x^2}{9-x^2}-1\right):\left(\dfrac{9-x^2}{x^2+x-6}+\dfrac{x-3}{2-x}-\dfrac{x+2}{x+3}\right)\left(dk:x\ne\pm3,x\ne2\right)\)

\(=\dfrac{3x-x^2-9+x^2}{9-x^2}:\left(\dfrac{9-x^2}{\left(x-2\right)\left(x+3\right)}-\dfrac{x-3}{x-2}-\dfrac{x+2}{x+3}\right)\)

\(=\dfrac{3x-9}{9-x^2}:\dfrac{9-x^2-\left(x-3\right)\left(x+3\right)-\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}\)

\(=-\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-2\right)\left(x+3\right)}{9-x^2-\left(x^2-9\right)-\left(x^2-4\right)}\)

\(=-\dfrac{3}{x+3}.\dfrac{\left(x-2\right)\left(x+3\right)}{9-x^2-x^2+9-x^2+4}\)

\(=\dfrac{-3\left(x-2\right)}{22-3x^2}\)

\(=\dfrac{-3x+6}{22-3x^2}\)

Vậy \(A=\dfrac{-3x+6}{22-3x^2}\) với \(x\ne\pm3,x\ne2\)

Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:44

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:46

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

ANH THƯ TRƯƠNG LÝ
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 7 2023 lúc 20:41

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{2}{\sqrt{x}+3}+\dfrac{2-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x+3\sqrt{x}+2\sqrt{x}-2+2-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

Chau Pham
Xem chi tiết
Mai Thùy Trang
20 tháng 12 2020 lúc 11:07

a.   \(4x\left(3x-2\right)-3x\left(4x+1\right)\)

  \(=12x^2-8x-12x^2-3x\)

  \(=-11x\)       \(\left(1\right)\)

     Thay \(x=-2\) vào  \(\left(1\right)\) ta được :

            \(-11.\left(-2\right)=22\)

b.    \(\left(x+3\right)\left(x-3\right)-\left(x-1\right)^2\)

   \(=\left(x^2-9\right)-\left(x^2-2x+1\right)\)

   \(=x^2-9-x^2+2x-1\)

   \(=2x-10\)       \(\left(2\right)\)

     Thay \(x=6\) vào \(\left(2\right)\) ta được :

             \(2.6-10=2\)

                  

Ú Bé Heo (ARMY BLINK)
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 22:34

Ta có: \(A=\left(x-y-1\right)^3-\left(x-y+1\right)^3+6\left(x-y\right)^2\)

\(=\left(x-y-1-x+y-1\right)\left[\left(x-y-1\right)^2+\left(x-y-1\right)\left(x-y+1\right)+\left(x-y+1\right)^2\right]+6\left(x-y\right)^2\)

\(=-2\cdot\left[3\left(x-y\right)^2+1\right]+6\left(x-y\right)^2\)

\(=-6\left(x-y\right)^2+6\left(x-y\right)^2-2\)

=-2

Đinh Cẩm Tú
Xem chi tiết
Nguyễn Huy Tú
17 tháng 4 2021 lúc 22:27

\(\left(\dfrac{\dfrac{x}{x+1}}{\dfrac{x^2}{x^2+x+1}}-\dfrac{2x+1}{x^2+x}\right)\dfrac{x^2-1}{x-1}\)ĐK : \(x\ne\pm1\)

\(=\left(\dfrac{x}{x+1}.\dfrac{x^2+x+1}{x^2}-\dfrac{2x+1}{x\left(x+1\right)}\right)\left(x+1\right)=\left(\dfrac{x^2+x-1}{x^2+x}-\dfrac{2x+1}{x\left(x+1\right)}\right)\left(x+1\right)\)

\(=\left(\dfrac{x^2+x-1-2x-1}{x\left(x+1\right)}\right)\left(x+1\right)=\dfrac{x^2-3x-2}{x}\)

Nguyễn Huy Tú
17 tháng 4 2021 lúc 22:32

à xin lỗi mình nhầm dòng cuối 

\(=\dfrac{x^2-x-2}{x}=\dfrac{\left(x+1\right)\left(x-2\right)}{x}\)

Để biểu thức trên nhận giá trị dương khi 

\(\dfrac{\left(x+1\right)\left(x-2\right)}{x}>0\)bạn tự xét TH cả tử và mẫu nhé, mình đánh trên này bị lỗi 

 

 

Nguyễn Thị Huyền Trân
Xem chi tiết
Yen Nhi
1 tháng 7 2021 lúc 20:03

\(a)\)

\(\left(2x+3\right)^2+\left(2x-3\right)^2-\left(2x+3\right)\left(4x-6\right)+xy\)

\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-3\right)+\left(2x-3\right)^2+xy\)

\(=\left(2x+3-2x+3\right)^2+xy\)

\(=6^2+2\left(-1\right)\)

\(=36-2\)

\(=34\)

\(b)\)

\(\left(x-2\right)^2-\left(x-1\right)\left(x+1\right)-x\left(1-x\right)\)

\(=x^2-4x+4-x^2+1-x+x^2\)

\(=x^2-5x+5\)

Thay \(x=-2\)vào ta có:

\(\left(-2\right)^2-5\left(-2\right)+5\)

\(=4+10+5\)

\(=19\)

Khách vãng lai đã xóa
Hoàng Tiến Long
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 3 2018 lúc 5:40

(x + 2)(x – 2) – (x – 3)(x + 1)

= x2 – 22 – (x2 + x – 3x – 3)

= x2 – 4 – x2 – x + 3x + 3

= 2x – 1