Mọi người có ai biết bài này chỉ mk vs ạ.
Cho hình thang cân ABCD.AB song song với CD.AB bằng AD và BD bằng CD.Tính các góc của hình thang?
cho hình thang cân ABCD AB song song với CD.AB=4cm,CD=10cm,AD=5cm.Trên tia đối BD lấy E sao cho BE=BD gọi H là chiều cao của E trên CD.Tính độ dài của CH.
Chứng minh định lí "Hình thang có hai đường chéo bằng nhau là hình thang cân" qua bài toán sau: Cho hình thang ABCD (AB = CD) có AC = BD.
Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại E. Chứng mình rằng:
a) ∆BDE là tam giác cân.
b) ∆ACD = ∆BDC.
c) Hình thang ABCD là hình thang cân.
CÁC BẠN GIẢI BÀI NÀY CÂU a) BẰNG CÁCH XÉT HAI TAM GIÁC GIÚP MK VS NHÉ ! CHỈ CẦN CÂU a) THÔI !!!! GIẢI BẰNG CÁCH XÉT HAI TAM GIÁC SAU ĐÓ SUY RA HAI CẠNH BẰNG NHAU ! GIÚP MK VS!
a, Ta có: BE song song AC ( theo bài ra)
AB song song CE ( E thuộc CD)
nên ABEC là hình bình hành, do đó AC=BE
mà AC = BD
nên BD=BE do đó BDE là tam giác cân
b, Ta có AC song song BE nên ˆBEC=ˆACD
mà ˆBED=ˆBDC ( BDE là tam giác cân )
do đó ˆACD=ˆBDC
Xét tg ACD và tg BDC có : ˆACD=ˆBDC
AC=BD( theo gt )
BC là cạnh chung
nên tg ACD =tg BDC ( c-g-c)
c, Theo chứng minh câu b, ta có: tg ACD= tg BDC
do đó ˆADC=ˆBCD
Vậy ABCD là hình thang cân
Mọi người ơi giúp mk với ~ Mk cảm ơn ~
Bài 1. cho ABCD là hình thang có AD // BC, có góc A - B = 20 độ, góc D= 2. góc B. tính số đo các góc của hình thang .
Bài 2. Cho hình thang cân ABCD, AB//CD, AD=AB, BD=DC. Tính các góc của hình thang cân.
Mơn ạ ~
Bài 1: ( hình tự vẽ )
Vì \(AD//BC\left(gt\right)\)
\(\Rightarrow\widehat{A}+\widehat{B}=180^0\)( 2 góc trong cùng phía ) mà\(\widehat{A}-\widehat{B}=20^0\left(gt\right)\)
\(\Rightarrow\hept{\begin{cases}\widehat{A}=100^0\\\widehat{B}=80^0\end{cases}}\)
\(\widehat{D}=2\widehat{B}=2.80^0=160^0\)
Do \(AD//BC\left(gt\right)\)
\(\Rightarrow\widehat{D}+\widehat{C}=180^0\)( 2 góc trong cùng phía )
\(\Rightarrow\widehat{C}=20^0\)
Vậy ...
Các bạn giúp mình giải mấy bài này với !!!! Mình cảm ơn trước nhé!!
Bài 1: Hình thang cân ABCD có AB song song CD, AB<CD. Kẻ các đường cao AH, BK. Chứng minh rằng DH=CK.
Bài 2:Hình thang cân ABCD có AB song song CD, O là giao điểm uaqr 2 đường chéo. Chứng minh rằng OA=OB, OC=OD
Bài 3: Cho tam giác ABC cân tại A, các đường phân giác BE, CF. Chứng minh rằng BFEC là hình thang cân có đáy nhỏ bằng cạnh bên
Bài 4: Cho tam giac ABC cân tại A. Lấy điểm D trên cạnh AB, điểm Etrên cạnh AC sao cho AD=AE
a) Tứ giác BDEC là hình gì? Vì sao?
b)Các điêm D,E ở vị trí nào thù BD=DE=EC?
Bài 5: Tính các goác của hình thang cân, biết 1 góc bằng 50 độ
1. Cho hình thang cân ABCD (AB//CD). Hai đường chéo cắt tại O . Biết góc COD=60 độ .CMR hình thang cân này có mỗi đường chéo bằng tổng 2 đáy.
2. Cho hình thang cân ABCD (đáy nhỏ AB).Vẽ AH vuông góc với CD.CMR DH=(CD-AD):2
MONG MỌI NGƯỜI GIÚP MK SỚM ĐỂ MK KỊP NỘP BÀI TẬP ( ^.^ ) !
Bài 1 : Vì hình thang ABCD cân
=> AD = BC
=> ADC = BCD
=> AC = BD
Xét ∆ACD và ∆BDC ta có :
AD = BC
ADC = BCD
AC = BD
=> ∆ACD = ∆BDC (c.g.c)
=> DAC = CBD
Mà DAB = CBA ( hình thang ABCD cân )
=> OAB = OBA
=> ∆ OAB cân
Mà DOC = AOB = 60°
=> ∆OAB đều ( trong ∆ cân có 1 góc = 60° thì ∆ đó là ∆ đều )
=> AB = BO = AO (1)
Xét ∆ ABC và ∆BAD ta có :
DAB = ABC ( cmt)
AB chung
AD = BC
=> ∆ ABC = ∆BAD(c.g.c)
=> ACB = ADB
Mà ADC = BCD (cmt)
=> ODC = OCD
=> ∆ODC cân tại O
Mà DOC = 60°
=> ∆ODC đều
=> OD = OC = DC (2)
Từ (1) và (2)
Bạn tự cộng các cạnh vào với nhau nhé
Bài 2) Kẻ BK vuông góc với CD
Xét ∆ vuông ADH và ∆ vuông BCK ta có :
AD = BC
ADC = BCD
=> ∆ADH = BCK ( ch - gn)
=> AH = BK
=> DH = CK
Ta có AH vuông góc với DC
BK vuông góc với CD
=> AH //BK
Xét ∆ABK và ∆AHK ta có :
AH = BK(cmt)
AK chung
HAK = AKB ( so le trong)
=> ∆ABK = ∆AHK (c.g.c)
=> HK = AB
Ta có : CD = DH + HK + KC
=> DH + CK = CD - HK
Mà HK = AB (cmt)
=> DH + CK = CD - AB
Vì DH = CK
Mà 2DH = CD - AB
=> DH = ( CD - AB )/2
=> 2CK = CD - AB
=> CK = ( CD- AB)/2
=> DH = (CD - AB)/2 (dpcm)
Cho hình thang cân ABCD(AB//CD) có AB=AD,BD=CD.Tính các góc cảu hình thang
Đầu tiên bạn vẽ hình ra.
*Vì đây là hình thang cân nên ta có những điều sau:
-AB//CD
-2 đường chéo bằng nhau : AC=BD=CD (theo giả thiết)
-2 cạnh bên bằng nhau: AD=BC=AB (theo giả thiết)
-tổng 2 góc đối nhau = 180 độ
-góc A=B ; góc C=D
Đặt các góc:ADB=D1 ; BDC=D2 ;ACB=C1 ; ACD=C2 ; DBC=B1 ; ABD=B2 ; DAC=A1 ; CAB = A2
*AB=AD suy ra tam giác ADB cân tại A nên góc D1=B2. Mặt khác vì AB//CD nên góc D2 = B2 (sole trong)
=>ADB=ABD=BDC => D1=D2
*AB=BC suy ra tam giác ABC cân tại B nên góc BAC=BCA. tương tự góc A2=C2 (sole trong)
=>A2=C1=C2 =>C1=C2
* Vì góc C=D nên suy ra C1=C2=D1=D2
* Có C2=D1 và lại có D1=B2 (đã chứng minh ở trên) nên C2=B2 (1)
* Xét tam giác BDC có BD=CD (theo giả thiết) nên BDC cân suy ra B1 = C = C1+C2 (2)
* Từ (1) và (2) suy ra B=B1+B2 = C1 + C2 + C2 = 3C2 = 3D2 (vì C2=D2 - CM trên thêm nữa góc D= D1 + D2 = 2D2 )
* Mà góc B+D = 180* nên suy ra 3.D2 + 2.D2 = 180* <=> 5.D2=180* <=> D2=36*
Suy ra D = C = 36 x 2 = 72*
A = B = 36 x 3 = 108*
cho hình thang ABCD( AD song song BC; AD>BC) đường chéo AC vuông góc với cạnh bên CD góc BAC bằng góc CAD và góc D bằng 60 độ a) CMR: ABCD là hình thang cân b) Tính độ dài cạnh đáy AD biết chu vi hìnhbthang bằng 20 cm
Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.
Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.
Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc với đường thẳng BC.Gọi I là giao điểm của MN và BC.
a)Chứng minh : IE=IF
b)Trên cạnh AC lấy điểm D sao cho CD=CN.Chứng minh rằng BMDC là hình thang cân.
Bài 4:Cho tam giác ABC cân ở A ;M là trung điểm của BC.Trên tia AM lấy điểm N;BN cắt AC ở D,CN cắt AB ở E.Chứng minh BEDC là hình thang cân
Bài 5:Cho hình thang cân ABCD (AB song song với CD) ; góc D=60 độ,AD=AB
a)Chứng minh :DB là phân giác góc ADC
b)Chứng minh : DB vuông góc với BC
Vẽ một hình thang cân ABCD có đáy AB song song CD, góc A bằng 60 độ cạnh AB bằng 6 cm, cạnh AD = BC = CB = 3 cm vẽ đường chéo BD .Hãy tính các góc của tam giác BCD?
Xét ΔBCD có:
\(BC=CD\left(gt\right)\)
\(\Rightarrow\text{Δ}BCD\) là tam giác cân tại C
Mà: ABCD là hình thang cân nên:
\(\widehat{BAD}=\widehat{ABC}=60^o\)
\(\widehat{ABC}+\widehat{DCB}=180^o\)
\(\Rightarrow\widehat{DCB}=180^o-60^o=120^o\)
ΔBCD lại là tam giác cân
\(\Rightarrow\widehat{DBC}=\widehat{CDB}=\dfrac{180^o-120^o}{2}=30^o\)