Tìm tất cả các số nguyên dương thoả mãn
a.b=3(b-a)
1,cho a,b là các số nguyên dương thoả mãn : a^2+b^2 chia hết cho a.b
tính giá trị của biểu thức A= (a^2+b^2)/2ab
2, cho tập hợp A gồm 21 phần tử là các số nguyên khác nhau thoả mãn tổng của 11 phần tử bất kì lớn hơn tổng của 10 phần tử còn lại. biết các số 101,102 thuộc A. tìm tất cả các phần tử của A
Tìm tất cả các số nguyên dương \(x;y;z\) thoả mãn : \(3^x+2^y=1+2^z\)
Tìm tất cả các số nguyên dương x,y thoả mãn: 9/xy-1/y=2+3/x
Dấu / là biểu thị phân số
\(\dfrac{2+3}{x}hay2+\dfrac{3}{x}\) vậy
Tìm tất cả các số nguyên dương thoả mãn:(x+y)^4=40x+41
tìm tất cả các số nguyên dương a và b sao cho a.b=3.(a-b)
Tìm tất cả các số nguyên dương a,b sao cho a.b = 3.(b-a)
Tìm tất cả các số nguyên dương a,b sao cho a.b = 3.(b-a)
Tác vụ khác
1 trong tổng số 3
Fwd: Nguyễn Hoàng Diệu Linh 2 bạn Hòa và Bình khởi hành cùng 1 lúc từ A đến B. Hòa đi nửa quãng đường đầu với vận tốc 5km/giờ và nửa quãng đường sau đi với vận tốc 4km/giờ. Bình đi nửa thời gian đầu với vận tốc 4km/giờ và nửa thời gian còn lại đi với vận tốc 4km/giờ. Hỏi ai đến B trước? Câu hỏi tương tự Đọc thêm Toán lớp 5Toán chuyển động Lê nam hoàng 19/03/2015 lúc 23:13 HÒA đi đến trước Đúng 6 Nguyễn Hoàng Diệu Linh đã chọn câu trả lời này. Võ Phi Trường 19/03/2015 lúc 21:03 Vì Bình đi nửa thời gian đầu =nửa thời gian sau nên vận tốc trung bình của Bình là (4+4):2=4(km/giờ) Trong nửa quãng đường từ A đến B đầu, Hòa đi 1 km hết 1:5 =1/5(giờ) Trong nửa quãng đường từ A đến B còn lại,Hòa đi 1 km hết 1:4=1/4(giờ) Trên cả quãng đường từ A đến B ,Hòa đi 2 k |
Câu 1:Cho tất cả các số nguyên x thoả mãn /x/<59
a) Tính tổng tất cả các số nguyên x
b) Tích của tất cả các số nguyên x là số dương hay âm vì sao? c)
|x| < 59 ; x thuộc Z
=> x thuộc {-59;-58;-57;..........;57;58;59}
a, tổng của tất cả các số nguyên x là:
-59 + (-58) + (-57) + ....... + 57 + 58 + 59
= (-59 + 59) + (-58 + 58) + (-57 + 57) + ...... + (-1 + 1) + 0
= 0 + 0 + 0+ ..... + 0 + 0
= 0
b, tích của tất cả các số nguyên x là:
-59 . (-58) . (-57) . ...0.... . 57 . 58 . 59
= 0
vậy tích của tất cả các số nguyên x ko âm cx ko dương
Tìm tất cả các số nguyên dương ( a, b) thỏa mãn điều kiện
\(\dfrac{a^2+b}{a.b-1}\) là số nguyên dương .
P/s: Em nhờ quý thầy cô giáo gợi ý và giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
\(a^2+b⋮ab-1\Rightarrow b\left(a^2+b\right)-a\left(ab-1\right)⋮ab-1\)
\(\Rightarrow a+b^2⋮ab-1\)
Do đó, vai trò của a và b là hoàn toàn như nhau.
TH1: \(a=b\Rightarrow\dfrac{a^2+a}{a^2-1}\in Z\Rightarrow\dfrac{a}{a-1}\in Z\Rightarrow1+\dfrac{1}{a-1}\in Z\)
\(\Rightarrow a=2\Rightarrow a=b=2\)
TH2: \(b>a\Rightarrow b\ge a+1\)
Do \(a^2+b⋮ab-1\Rightarrow a^2+b\ge ab-1\) (nếu \(a< b\) ta sẽ xét với \(a+b^2⋮ab-1\) cho kết quả tương tự nên ko cần TH3 \(a>b\))
\(a^2-1+2\ge ab-b\Rightarrow\left(a-1\right)\left(a+1\right)+2\ge b\left(a-1\right)\)
\(\Rightarrow\left(a-1\right)\left(b-a-1\right)\le2\)
\(\Rightarrow\left(a-1\right)\left(b-a-1\right)=\left\{0;1;2\right\}\)
TH2.1: \(\left(a-1\right)\left(b-a-1\right)=0\Rightarrow\left[{}\begin{matrix}a=1\\b=a+1\end{matrix}\right.\)
- Với \(a=1\Rightarrow\dfrac{b+1}{b-1}\in Z\Rightarrow1+\dfrac{2}{b-1}\in Z\Rightarrow b=\left\{2;3\right\}\)
\(\Rightarrow\left(a;b\right)=\left(1;2\right);\left(1;3\right)\) (và 2 bộ hoán vị \(\left(2;1\right);\left(3;1\right)\) ứng với \(a>b\), lần sau sẽ hoán vị nghiệm luôn ko giải thích lại)
- Với \(b=a+1\Rightarrow\dfrac{a^2+a+1}{a^2+a-1}\in Z\Rightarrow1+\dfrac{2}{a^2+a-1}\in Z\)
\(\Rightarrow a^2+a-1=\left\{1;2\right\}\Rightarrow a=1\Rightarrow b=2\) giống như trên
TH2.2: \(\left(a-1\right)\left(b-a-1\right)=1\Rightarrow\left\{{}\begin{matrix}a-1=1\\b-a-1=1\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(2;4\right);\left(4;2\right)\)
TH2.3: \(\left(a-1\right)\left(b-a-1\right)=2=2.1=1.2\)
\(\Rightarrow\left(a;b\right)=\left(3;5\right);\left(5;3\right);\left(2;5\right);\left(5;2\right)\)
Vậy các bộ số thỏa mãn là: \(\left(1;2\right);\left(2;1\right);\left(1;3\right);\left(3;1\right);\left(2;2\right);\left(2;5\right);\left(5;2\right);\left(3;5\right);\left(5;3\right)\)