Cho đường thẳng y= ( m- 2)x + 3( m+ 2)
a. Tìm điểm cố định mà đường thẳng trên luôn đi qua
b. Tìm m để 2 đường thẳng trên 2 trục tọa độ 1 tam giác có S =4
c. Tìm m để 2 đường thẳng trên cách trục tọa độ 1 khoảng cách lướn nhất
Trong mặt phẳng Oxy, cho đường thẳng (d): mx + (2 – 3m)y + m – 1 = 0 1) Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi số thực m. 2) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) là lớn nhất. 3) Tìm m để đường thẳng (d) cắt trục tọa độ Ox, Oy lần lượt tại A, B sao cho tam giác OAB cân.
cho đường thẳng y=mx+m-1
a) Tìm m để đường thẳng đã cho đi qua điểm
A(−3;2)
a) Chứng minh đường thẳng đã cho luôn đi qua một điểm cố định
b) Tìm m để đường thẳng đã cho tạo với hai trục tọa độ một tam giác có diện tích bằng 2.
cho hàm số bậc nhất y=(m+1)x+m=3 biết đường thẳng (d) đi qua điểm m(d;2) và song song với y=2x khác1. a)tìm M để đồ thị hàm số trên cắt đường thẳng =2x+1 tại 1 điểm trên trục tung b)tìm đồ thị hàm số trên trục tạo với 2 trục tọa độ 1 tam giác vuông cân
Cho đường thẳng d hàm số y= ax + 3a +2
a. Xác định a để đường thẳng d cắt trục hoành tại điểm có hoành độ x= -1. Tính khoảng cách từ gốc tọa độ đến đường thẳng d với a
b. Cmr với mọi a họ đường thẳng xã định B luôn đi qua điểm cố định
c. Tìm a để đường thẳng d tạo 2 trục tọa độ 1 tam giác S =1
Cho hàm số: y = (2m - 3)x + m - 5.
a) Vẽ đồ thị với m = 6.
b) Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi.
c) Tìm m để đồ thị hàm số tạo với 2 trục tọa độ một tam giác vuông cân.
d) tìm m để đồ thị hàm số tạo với trục hoành một góc 45 độ.
e) tìm m để đồ thị hàm số cắt đường thẳng y= 3x-4 tại 1 điểm trên Oy.
f) tìm m để đồ thị hàm số cắt đường thẳng y= 3x-4 tại 1 điểm trên Ox.
Cho đường thẳng (d) y = ( m-1).x +2m+1
â) Tìm m để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng -3 . Vẽ đồ thị hàm số với m vừa tìm được và chứng tỏ giao điểm của đồ thị vừa tìm được với đường thẳng (d ') y=x+1 nằm trên trục hoành
b) Chứng tỏ (d) luôn đi qua điểm cố định với mọi m
c) Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (d) đạt giá trị lớn nhất
cho đường thẳng y=(m-2) x+2 (d) a, CMR: đường thẳng (d) luôn đi qua 1 điểm cố định với mọi m b,tìm già trị của m để khoảng cách từ gốc tọa độ đến đương thẳng (d) =1 c, tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng m là lớn nhất
\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua
\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)
Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)
Cho đường thẳng (d1): y= (3m-1) x + 2k - 4, (d2): y=(2m-1)x + 3k - 14
a/ Tìm m,k để đường thẳng d1 đi qua gốc tọa độ
b/ Tìm m,k để đường thẳng d2 cắt 2 trục tọa độ
c/ Tìm k để hai đường cắt nhau tại một điểm trên trục tung
a) Cho hai đường thẳng (d1): y=x+2 và (d2): y=-1/3x+2. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ
b) Chứng minh đường thẳng y=(m-2)x+3 luôn đi qua một điểm cố định với mọi m. Tìm điểm cố định đó
b: y=mx-2x+3
Điểm mà (d) luôn đi qua có tọa độ là:
x=0 và y=-2*0+3=3