Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn ngọc linh
Xem chi tiết
Akai Haruma
5 tháng 2 lúc 23:28

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

Akai Haruma
5 tháng 2 lúc 23:32

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

Trần Nhật Minh Anh
Xem chi tiết
Vũ Nhật Minh
Xem chi tiết
Văn Thanh Lương
12 tháng 5 2021 lúc 20:05

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

Khách vãng lai đã xóa
Mai Kim Ngan Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 8:51

undefined

Mai Kim Ngan Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 8:50

Gọi d=UCLN(n+1;2n+3)

\(\Leftrightarrow2n+3-2n-2⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>UCLN(n+1;2n+3)=1

=>n+1/2n+3 là phân số tối giản

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2019 lúc 13:10

Hướng dẫn giải:

Gọi d là ƯCLN của 2n + 1 và  2 n 2 - 1

⇒ (2n +1)⋮ d và  ( 2 n 2 - 1 ) ⋮ d

⇒ [ n ( 2 n + 1 ) - ( 2 n 2 - 1 ) ] = n + 1 ⋮ d

⇒ 2(n + 1) ⋮ d ⇒ (2n + 2) – (2n + 1) = 1 ⋮ d

⇒ d = 1 hoặc d = -1

Vậy phân thức đã cho tối giản với ∀n ∈ N

Cao yến Chi
Xem chi tiết
Nguyễn Phương Uyên
14 tháng 4 2020 lúc 14:31

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

Khách vãng lai đã xóa
Nguyễn Thị Huyền Trang
14 tháng 4 2020 lúc 14:50

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

Khách vãng lai đã xóa
Cao yến Chi
15 tháng 4 2020 lúc 13:45

các bn giải hộ mk bài 2 ik

thật sự mk đang rất cần nó!!!

Khách vãng lai đã xóa
Nguyễn Thị Hoa Lâm
Xem chi tiết
Quách Dương Hà Anh
11 tháng 7 2019 lúc 8:22

Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23

=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)

Ta có: 2n (n+2) chia hết cho 2

=> 2n (n+2) là số chẵn

Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản

=> 6 / n - 23 / 2n (n+2) là phân số tối giản

Vậy 12n+1 / 2 (n+2) là phân số tối giản

Quách Dương Hà Anh
Xem chi tiết
Quách Dương Hà Anh
11 tháng 7 2019 lúc 8:02

Mọi người ai trả lời giúp mình với ! @_@

Quách Dương Hà Anh
11 tháng 7 2019 lúc 8:21

Sau một hồi tìm hiểu thì mình đã có lời giải r, bạn nào chưa bt thì tham khảo nhé !

Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23

=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)

Ta có: 2n (n+2) chia hết cho 2

=> 2n (n+2) là số chẵn

Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản

=> 6 / n - 23 / 2n (n+2) là phân số tối giản

Vậy 12n+1 / 2 (n+2) là phân số tối giản

Lê Quang Phúc
11 tháng 7 2019 lúc 9:32

Quách Dương Hà Anh mình ch bt là bạn giải đúng hay sai nhưng nếu giải thích là số lẻ/ số chẵn là phân số tối giản thì sai nhé.

VD: 3/12 = 1/4.

Phải giải thích là 23 là số nguyên tố => 23 chỉ chia hết cho chính nó và 1.

Mà 23 và 1 là số lẻ, còn 2n(n+2) là số chẵn nên 23 không chia hết cho 2n(n+2) =>....