Cho ba số tự nhiên a, b, c\(\ne0\). Chứng tỏ rằng: Nếu a là bội của b; b là bội của c thì a là bội của c.
Cho ba số tự nhiên a,b,c khác 0 , Chứng tỏ rằng : Nếu "a" là bội của "b" , "b" là bội của "c" thì "a" là bội của "c"?
a là bội của b
=> a chia hết cho b
=> a = bk
Mà b chia hết cho c
=> b = cq
=> a = bk = cq.k chia hết cho c
=> a chia hết cho c
=> a là bội của c
=> Đpcm
cho 3 số tự nhiên a,b,c khác 0 chứng tỏ rằng nếu a là bội của b; b là bội của c thì a là bội của c
a là bội của b => a = b.q ( q là số tự nhiên khác 0) (1)
b là bôị của c => b = c.t ( t là số tự nhiên khác 0) (2)
Thay (2) vào (1) ta có: a = c.t.q => a chia hết cho c
=> a là bội của c (đpcm)
Theo đề bài
a=m.b (m là số nguyên)
b=n.c (n số nguyên)
=> a=m.n.c
Do m,n là số nguyên => m.n là số nguyên => a là bội của c
a)Tổng của ba số tự nhiên liên tiếp có chia hết cho 3?
b) chứng tỏ rằng tích của hai số tự nhiên liên tiếp có chia hết cho 2
c) Chứng tỏ rằng mọi số tự nhiên có ba chữ số giống nhau đều là bội của 37.
d) chứng tỏ rằng tổng ab + ba chia hết cho 11
a, gọi 3 số tự nhiên liên tiếp đó là : a; a + 1; a + 2
tổng của chúng là :
a + a + 1 + a + 2
= (a + a + a) + (1 + 2)
= 3a + 3
= 3(a + 1) ⋮ 3 (đpcm)
b, trong 2 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 2
=> tích của chúng chia hết chô 2 (đpcm)
c, gọi số tự nhiên có 3 chữ số giống nhau là : aaa (a là chữ số)
aaa = a.111 = a.3.37 ⋮ 37 (đpcm)
d, ab + ba
= 10a + b + 10b + a
= (10a + a) + (10b + b)
= 11a + 11b
= 11(a + b) ⋮ 11 (đpcm)
d, ab + ba
= 10a + b + 10b + a
= a ( 10 + 1) + b(10+1)
= a.11 + b.11
= ( a + b ).11 \(⋮\)11
Vậy ab + ba \(⋮\)11
Hok tốt
c,
Gọi số có 3 chữ số giống nhau là aaa ( a\(\inℕ^∗\))
Ta có:
aaa = 111.a = 3.37.a \(⋮\)37 ( đpcm )
Hok tốt
chứng tỏ rằng:
a) Tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3.
b) Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4.
c) a b ¯ - b a ¯ ⋮ 9 (với a > b )
d) Nếu a b ¯ + c d ¯ ⋮ 11 thì a b c d ¯ ⋮ 11
1) Cho ba số tự nhiên a,b,c khác 0. Chứng minh rằng: Nếu a là bội của b; b là bội của c thì a là bội của c
2) Tìm x biết: 1+2+3+4+...+x= 3570
3) a/ Tìm hai số tự nhiên liên tiếp có tích bằng 630
b/ Tìm ba số tự nhiên có tích bằng 2184
c/ Tìm hai số tự nhiên liên tiếp bằng 756
d/ Tìm ba số lẻ liên tiếp có tích bằng 1287
Cho 3 số tự nhiên a,b,c khác 0
Chứng tỏ rằng :nếu a là bội của b;b là bội của c thì a là bội của c
Theo bài ta có :
\(a\) là \(B\left(b\right)\) \(\Leftrightarrow a=b.q\left(q\in Z\right)\left(1\right)\)
\(b\) là \(B\left(c\right)\) \(\Leftrightarrow b=c.q_1\left(q_1\in N\right)\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta có :
\(a=c.q.q_1\)
\(\Leftrightarrow a⋮c\)
\(\Leftrightarrow a\) là \(B\left(c\right)\)
\(\Leftrightarrowđpcm\)
Chứng tỏ rằng:
a, Tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3.
b, Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4.
c, a b - b a ⋮ 9 với a>b
d, Nếu a b + c d ⋮ 11 thì a b c d ⋮ 11
a, Gọi ba số tự nhiên liên tiếp là: a; a+1; a+2 tổng của ba số này bằng: a+a+1+a+2 = 3a + 3 = 3(a+1) là một số chia hết cho 3.
b, Gọi bốn số tự nhiên liên tiếp là: a; a+1; a+2; a+3 tổng của bốn số này bằng: a+a+1+a+2+a+3 = 4a+6, là một số chia không hết cho 4 vì 4a ⋮ 4 và 6 không chia hết cho 4
c, Ta có: a b - b a = 10 a + b - 10 b + a = 9a - 9b = 9(a - b) với a > b
Mà 9(a - b) ⋮ 9 nên a b - b a ⋮ 9
d, Ta có: a b c d = 100 a b + c d = 99 a b + a b + c d
Mà 99 a b ⋮ 11 và a b + c d ⋮ 11 (đề bài), nên a b c d ⋮ 11
chứng tỏ rằng : nếu a là bội của b ; b là bội của c thì a là bội của c
a vừa là ước vừa là bội của b thì chắc chắn |a|=b hay a=b hoặc a=-b
có thể chứng minh đơn giản như sau: giả sử a= bx và b=ay ( với x ; y là 2 số nguyên)
thế b=ay vào a=bx ta được: a= axy => xy=1 vì x và y nguyên nên
x=1 và y=1 hoặc x=-1 và y=-1 thay x và y vào điều giả sử ta được a=b hoặc a=-b