Tìm giá trị lớn nhất của b.thức B=-(4/9x-2/15)^6 +3
A=2/6x-5-9x^2 Tìm giá trị nhỏ nhất của b.thức
a,Tìm giá trị nhỏ nhất của biểu thức
A=(2x+1/3)^4-1
b,Tìm giá trị lớn nhất của biểu thức
B=-(4/9x-2/15)^6+3
Tìm giá trị nhỏ nhất của bthuc sau:
B= 2x^2 + 10x - 1
Tính giá trị lớn nhất của b.thức sau
C= 5x - x^2
\(B=2x^2+10x-1\)
=> \(B=2\left(x^2+5x\right)-1\)
=> \(B=2\left(x^2+2.x\frac{5}{2}+\frac{25}{4}\right)-\frac{27}{2}\)
=> \(B=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)
Có \(2\left(x+\frac{5}{2}\right)^2\ge0\)với mọi x
=> \(2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\)
Dấu "=" xảy ra <=> \(\left(x+\frac{5}{2}\right)^2=0\)<=> \(x+\frac{5}{2}=0\)<=> \(x=\frac{-5}{2}\)
KL: Bmin = \(\frac{-27}{2}\)<=> \(x=\frac{-5}{2}\)
\(C=5x-x^2\)
=> \(C=-\left(x^2-5x\right)\)
=> \(C=-\left(x^2-2.x.\frac{5}{2}+\frac{25}{4}\right)+\frac{25}{4}\)
=> \(C=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Có \(\left(x-\frac{5}{2}\right)^2\ge0\)với mọi x
=> \(-\left(x-\frac{5}{2}\right)^2\le0\)
=> \(C=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Dấu "=" xảy ra <=> \(\left(x-\frac{5}{2}\right)^2=0\)<=> \(x-\frac{5}{2}=0\)<=> \(x=\frac{5}{2}\)
KL: Cmax = \(\frac{25}{4}\)<=> \(x=\frac{5}{2}\)
B=2x2+10x-1=2(x2+5x-1/2)=2(x2+2*5/2*x+25/4-27/4)=2[x2+2*5/2*x+(5/2)2]-27/2=2(x+5/2)2-27/2
Ta có: (x+5/2)^2>=0(với mọi x)
=> 2(x+5/2)^2>=0(với mọi x)
=> 2(x+5/2)^2-27/2>=-27/2(với mọi x)
hay B>=-27/2( với mọi x)
Do đó, GTNN của B là -27/2 khi:
x+5/2=0
x=-5/2
Vậy GTNN của B là -27/2 khi x=-5/2
C=5x-x^2=-x^2+5x=-x^2+2*5/2*x-25/4+25/4=-[x^2-2*5/2*x+(5/2)^2]+25/4=-(x-5/2)^2+25/4
Ta có: (x-5/2)^2>=0(với mọi x)
=>-(x-5/2)^2<=0(với mọi x)
=> -(x-5/2)^2+25/4<=25/4(với mọi x) hay C<=25/4(với mọi x)
Do đó, GTLN của C là 25/4 khi: x-5/2=0
x=5/2
Vậy GTLN của C là 25/4 tại x=5/2
Tìm giá trị nhỏ nhất hoặc lớn nhất của
A=3,7|4,3-x| ;,B=(2x+1/3)^4-1 ; C=0,5-|x-4| ;D=-(4/9x-2/15)^6+3
GTNN A= 0
GTNN B= -1
GTLN C = 0,5
GTLN D = 3
Để : \(A=3,7\left|4,3-x\right|min\)
Thì :\(\left|4,3-x\right|\)Phải min
Ta có :\(\left|4,3-x\right|\ge0\)
\(\Rightarrow\left|4,3-x\right|min=0\)
\(\Rightarrow4,3-x=0\Rightarrow x=4,3\)
\(\Rightarrow Amin=3,7X4.3=15.91\)
tìm giá trị lớn nhất lớn nhất của biểu thức a=-(45-9x)^4-(15+3y)^2
Tìm giá trị nhỏ nhất của b.thức A= ( 2x+ 1/3 )^4 -1
Theo đề bài ta có: \(A=\left(2x+\frac{1}{3}\right)^4-1\)
Nhận xét: \(\left(2x+\frac{1}{3}\right)^4\ge0\forall x\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x+\frac{1}{3}\right)^4=0\Rightarrow x=\frac{-1}{6}\)
Vậy \(minA=-1\Leftrightarrow x=\frac{-1}{6}\)
Theo đề bài, ta có:
\(A=\left(2x+\frac{1}{3}\right)^4-1\)
Nhận xét:
\(\left(2x+\frac{1}{3}\right)^4\ge0\forall x\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\forall x\)
Dấu\("="\)xảy ra khi \(\Leftrightarrow\left(2x+\frac{1}{3}\right)^4=0\Rightarrow x=\frac{-1}{6}\)
Vậy \(A=-1\Leftrightarrow x=\frac{-1}{6}\)
Có \(A=\left(2x+\frac{1}{3}\right)^4-1\)
Mà \(\left(2x+\frac{1}{3}\right)^4\ge0\forall x\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x+\frac{1}{3}\right)^4=0\)
\(\Leftrightarrow x=\frac{-1}{6}\)
Vậy \(Min_A=-1\Leftrightarrow x=\frac{-1}{6}\)
Tìm giá trị nhỏ nhất hoacwk lớn nhất của
A=3,7+|4,3-x|
B=(2x+1/3)^4-1
C=0,5-|x-4|
D=-(4/9x-2/15)+3
tìm giá trị lớn nhất của biểu thức
B=(4/9x + 2/5) +3
* Giải phương trình
a. \(\sqrt{\left(x-3\right)^2}=2\)
b. \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
* Cho Q= \(\dfrac{1}{x-2\sqrt{x}+3}\)
Tìm giá trị lớn nhất của Q
a) \(\sqrt{\left(x-3\right)^2}=2\Rightarrow\left|x-3\right|=2\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Rightarrow\sqrt{9\left(x+2\right)}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25\left(x+2\right)}=6\)
\(\Rightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Rightarrow2\sqrt{x+2}=6\Rightarrow\sqrt{x+2}=3\Rightarrow x+2=9\Rightarrow x=7\)
\(Q=\dfrac{1}{x-2\sqrt{x}+3}\)
Ta có: \(x-2\sqrt{x}+3=x-2\sqrt{x}+1+2=\left(\sqrt{x}-1\right)^2+2\ge2\)
\(\Rightarrow\dfrac{1}{x-2\sqrt{x}+3}\le2\Rightarrow Q_{max}=2\) khi \(x=1\)