Tìm x khi:
(1/2. x - 3) . (2/3. x + 1/2) = 0
1. Cho B=(2+x/2-x -2-x/2+x +4x/4-x^2) : x-3/2x-x^2
a) Rút gọn B
b) Tìm gtri của B khi x=1/2 ; x=2
c) Tìm x để A>0 ; A≤0
d)TÌm x để A<1
2. CHo C= 1/x+1 - ( x^3-x/x^2+1)[ 1 / (x+1)^2 - 1 / x^2-1 ]
a)Rút gọn C
b)Tìm x khi C=1
c)Tìm gtri của C khi x=2
d)Tìm x để C>0; C<0
Cần trước sáng ,mai
cho hàm số y =f(x) =\(\left\{{}\begin{matrix}\dfrac{2}{x-1}\\\sqrt{x+1}\\x^{2^{ }}-1\end{matrix}\right.\)
khi x< 0 ; khi 0 ≤ x ≤ 2 ; khi x>2
a. Tìm tập xác định của hàm số.
b. Tính f(-1), f(0), f(1), f(2), f(3).
a: TXĐ: D=R
b: \(f\left(-1\right)=\dfrac{2}{-1-1}=\dfrac{2}{-2}=-1\)
\(f\left(0\right)=\sqrt{0+1}=1\)
\(f\left(1\right)=\sqrt{1+1}=\sqrt{2}\)
\(f\left(2\right)=\sqrt{3}\)
P=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\) với x\(\ge\) 0;x\(\ne\) 1
a) rút gọn BT
B)tím P khi x=9
C) tìm x khi P=\(\dfrac{1}{2}\)
D)tìm x đẻ P g trị nguyên
a: \(P=\dfrac{15\sqrt{x}-11+\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11+3x+7\sqrt{x}-6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+21\sqrt{x}-14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
b: Khi x=9 thì \(P=\dfrac{9+21\cdot3-14}{\left(3+3\right)\left(3-1\right)}=\dfrac{29}{6}\)
Bài 2
Cho P = √x/√x+1 + 2√2/√x+1 - 3x+1/x+1 ; x≥0,x≠1
a) Rút gọn P
b) Tính P khi x = 1
c) Tính P khi x = 4 - 2√3
d) Tìm x , khi P = 1/3
a) f(x) = { √x -1/x2-1 khi x≠1 và 2 khi x=1 } (x0 = 1)
b) f(x) = { x3+8/4x+8 khi x≠-2 và 3 khi x=-2 } (x0 = -2)
c) f (x) = { x3-x2-x+1/x2-3x+2 khi x≠1 và 1 khi x=1 } tại x0 = 1
d) f(x) = { x3+x+2/x3+1 khi x≠-1 và 4/3 khi x=1 } tại x0 = -1
\(E=\left(\frac{x+1}{x-1}\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-2}\right)\)
Rút gọn E
Tính E khi \(x^2-9=0\)
Tìm giá trị của x để E=3
Tìm x để E<0
Tính x khi E-x-3=0
Tìm số nguyên x khi :
a) (x^2-5).(x^2-25)<0
b)(x-1).(y+2)=-3
c)(x-2).(5-x)=0
d)(x-1).(x^2+1)=0
Bài giải
a, \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
\(\Rightarrow\text{ }\left(x^2-5\right)\text{ và }\left(x^2-25\right)\text{ trái dấu}\)
Mà \(x^2-5>x^2-25\)
\(\Rightarrow\hept{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 25\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>\frac{5}{x}\\x< \frac{25}{x}\end{cases}}\)\(\Rightarrow\text{ }\frac{5}{x}< x< \frac{25}{x}\text{ }\Rightarrow\text{ }\frac{5}{x}< \frac{x^2}{x}< \frac{25}{x}\text{ }\Rightarrow\text{ }5< x^2< 25\)
\(\Rightarrow\text{ }x\in\left\{\pm3\text{ ; }\pm4\right\}\)
b, \(\left(x-1\right)\left(y+2\right)=-3\)
\(\Rightarrow\text{ }\left(x-1\right)\text{ ; }\left(y+2\right)\inƯ\left(-3\right)\)
Ta có bảng :
x - 1 | - 3 | - 1 |
y + 2 | 1 | 3 |
x | - 2 | 0 |
y | - 1 | 1 |
\(\Rightarrow\text{ }\left(x\text{ ; }y\right)=\left(-2\text{ ; }-1\right)\text{ ; }\left(0\text{ ; }1\right)\)
c, \(\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{2\text{ ; }5\right\}\)
d, \(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x^2=-1\text{ ( loại )}\end{cases}}\)
\(\Rightarrow\text{ }x=1\)
Cho đa thức M = ax ^ 2 + by ^2+cxy (x,y là biến). Tìm a,b,c biết:
Khi x=0,y = 1 thì M = -3. Khi x = -2,y =0 thì M=8. Khi x =1,y = -1 thì M =0
R= ( 3 căn x/ căn x +2 + căn x/căn x-2 - 3x-5 căn x/ 4-x) : (2 căn x -1/căn x -2 -1
a/ Rút gon. b/ Tính giá trị của biểu thức R khi x = 49. c/ Tìm x biết R= 1/3. d/ Tìm x biết R>0
\(R=\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{3x-5\sqrt{x}}{4-x}\right):\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}-1\right)\left(ĐK:x\ge0,x\ne4\right)\\ =\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{3x-5\sqrt{x}}{\sqrt{x}^2-2^2}\right):\dfrac{2\sqrt{x}-1-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)+3x-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}-2}{2\sqrt{x}-1-\sqrt{x}+2}\\ =\dfrac{3x-6\sqrt{x}+x+2\sqrt{x}+3x-5\sqrt{x}}{\sqrt{x}+2}.\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{7x-9\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)
Bạn xem lại đề nhé, rút gọn thường ra kết quả rất đẹp chứ không dài như kết quả này đâu ạ.
Giúp với ạ mình cảm ơn ai làm được mình cho 100sao