2x+5=1024
Bài 1: tìm x
a) 2^2x.2^4=1024
b) 2.3^x=10.3^12+8.27^4
c) 5^8.25^x+1=5^17
d) 3^x-1+3^x-4=28.243
e) (2x-4)^5=(2x-4)^3
a) \(2^{2x}.2^4=1024\)
\(2^{2x}=1024:2^4\)
\(2^{2x}=1024:16\)
\(2^{2x}=64\)
\(2^{2x}=2^6\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
vay \(x=3\)
b) \(2.3^x=10.3^{12}+8.27^4\)
\(2.3^x=2.5.3^{12}+2^3.\left(3^3\right)^4\)
\(2.3^x=2.5.3^{12}+2^3.3^{12}\)
\(2.3^x=2.3^{12}.\left(5+2^2\right)\)
\(2.3^x=2.3^{12}.9\)
\(2.3^x=2.3^{12}.3^2\)
\(2.3^x=2.3^{14}\)
\(\Rightarrow x=14\)
vay \(x=14\)
c) \(5^8.25^x+1=5^{17}\)
\(5^8.\left(5^2\right)^x+1=5^{17}\)
\(5^8.5^{2x}+1=5^{17}\)
\(5^{8+2x}=5^{17}-1\)
e) \(\left(2x-4\right)^5=\left(2x-4\right)^3\)
\(\left(2x-4\right)^5-\left(2x-4\right)^3=0\)
\(\left(2x-4\right)\left[\left(2x-4\right)^2-1\right]=0\)
\(\left(2x-4\right)\left(2x-4-1\right)\left(2x-4+1\right)=0\)
\(\left(2x-4\right)\left(2x-5\right)\left(2x-3\right)=0\)
\(\Rightarrow2x-4=0\)hoac \(\orbr{\begin{cases}2x-5=0\\2x-3=0\end{cases}}\)
\(\Rightarrow2x=4\)hoac \(\orbr{\begin{cases}2x=5\\2x=3\end{cases}}\)
\(\Rightarrow x=2\)hoac \(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{3}{2}\end{cases}}\)
vay \(x=2\)hoac \(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{3}{2}\end{cases}}\)
2x . 162 =1024
`<=>2^x=1024/162=512/81`
Vì `x\inNN` nên không tồn tại `x` thoả mãn.
Vậy không tồn tại `x` là số tự nhiên thoả mãn đề.
\(\Leftrightarrow2^x=\dfrac{512}{51}\\ \Leftrightarrow x=\log_2\dfrac{512}{51}\)
Mình thấy đề bạn để lớp 6, nhưng lớp 6 thì chưa có học phần này, nên bạn kiểm tra lại đề nhé.
Tìm x, biết :
a. 70 - 5. ( x - 3 ) = 45
b. 10 + 2.x = 45 : 43
c. 60 - 3 .x - 2 = 51
d. 4.x - 20 = 25 : 23
e. 2x.4 = 16
f. 3x.3 = 243
g. 64.4x = 168
h. 2x.162 = 1024
Tách ?
`a, 70 -5.(x-3) =45`
`=> 5.(x-3)= 70-45`
`=> 5.(x-3)=25`
`=>x-3=25:5`
`=>x-3=5`
`=>x= 5+3`
`=>x=8`
______
`b,10 + 2.x = 4^5:4^3`
`=> 10 + 2.x = 4^(5-3)`
`=> 10 + 2.x =4^2=16`
`=> 2.x=16-10`
`=>2.x=6`
`=>x=6:2`
`=>x=3`
_____
`c,60-3.x-2=51`
`=> 60-3.x= 51+2`
`=> 60-3.x=53`
`=>3.x=60-53`
`=> 3.x= 7`
`=>x= 7/3`
____
`d, 4.x-20=2^5:2^3`
`=> 4.x-20=2^(5-3)`
`=> 4.x-20=2^2`
`=> 4.x= 4+20`
`=>4.x=24`
`=>x=24:4`
`=>x=6`
____
`2^x . 4=16`
`=> 2^x=16:4`
`=>2^x= 4`
`=>2^x=2^2`
`=>x=2`
____
`f, 3^x . 3=243`
`=>3^x=243:3`
`=> 3^x=81`
`=> 3^x=3^3`
`=>x=3`
_____
`g, 64. 4^x =16^8`
`=> 4^3 . 4^x=(4^2)^8`
`=> 4^3 . 4^x = 4^(16)`
`=> 4^x= 4^(16-3)`
`=>4^x=4^(13)`
`=>x=13`
_____
`2^x . 16^2 =1024`
`=> 2^x= 1024 : 16^2`
`=>2^x=4`
`=>2^x=2^2`
`=>x=2`
a: =>5(x-3)=25
=>x-3=5
=>x=8
b: =>2x=16-10=6
=>x=3
c: =>58-3x=51
=>3x=7
=>x=7/3
d: =>4x-20=4
=>4x=24
=>x=6
e: =>2^x=4
=>2^x=2^2
=>x=2
f: =>3^x=81
=>3^x=3^4
=>x=4
g: =>4^x*4^3=4^16
=>x+3=16
=>x=13
h: =>2^x=1024/256=4=2^2
=>x=2
a/ 4^(x-3)+4^(x-5)=68
b/ 1/3-1/3:|2x-1|=-2/3
c/ 2|x-1|-3|x+5|=0
d/( √x +7)^10 =1024*125^2*25^2
a: \(\Leftrightarrow4^{x-5}\cdot17=68\)
=>4^x-5=4
=>x-5=1
=>x=6
b: \(\Leftrightarrow\dfrac{1}{3}:\left|2x-1\right|=\dfrac{1}{3}+\dfrac{2}{3}=1\)
=>|2x-1|=1/3
=>2x-1=1/3 hoặc 2x-1=-1/3
=>x=2/3 hoặc x=1/3
c: =>|2x-2|=|3x+15|
=>3x+15=2x-2 hoặc 3x+15=-2x+2
=>x=-17 hoặc x=-13/5
Cau 1 tim x biet
a) |2x-2019|=1
b)(2-x)5=-32
c) 4x+22x+1-22x+2=-1024
\(a,|2x-2019|=1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-2019=1\\2x-2019=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=2020\\2x=2018\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1010\\x=1009\end{cases}}\)
Vậy ............
\(b,\left(2-x\right)^5=-32\)
\(\Leftrightarrow\left(2-x\right)^5=\left(-2\right)^5\)
\(\Leftrightarrow2-x=-2\)
\(\Leftrightarrow x=4\)
Vậy ..........
tìm x ϵ n , biết
2x = 16
2x . 16 = 1024
2x - 26 = 6
3x . 3 = 243
`@` `\text {Ans}`
`\downarrow`
`2^x = 16`
`=> 2^x = 2^4`
`=> x = 4`
Vậy, `x = 4.`
____
`2^x*16 = 1024`
`=> 2^x =`\(2^{10}\div2^4\)
`=> 2^x = 2^6`
`=> x = 6`
Vậy, `x = 6`
______
`2^x - 26 = 6`
`=> 2^x = 6 + 26`
`=> 2^x = 32`
`=> 2^x = 2^5`
`=> x = 5`
Vậy, `x = 5`
`3^x*3 = 243`
`=> 3^x * 3 = 3^5`
`=> 3^x = 3^5 \div 3`
`=> 3^x = 3^4`
`=> x = 4`
Vậy, `x = 4.`
(3x^8-2x^6+x^5+2x^4-x^2+1)^5=a0+a1 X +a2 X^2+… +a40 X^40
Giá trị tổng a0+a1 +a2 +… +a40 là:
A,1024
B,512
C,128
D,256
Tìm x ∈ N , biết.
a) 2 x . 2 2 = 32
b) 27 . 3 x = 243
c) 2 x . 2 4 = 1024
d) 49 . 7 x = 2041
Tìm x ∈ N, biết.
a, 2 x . 2 2 = 32
b, 27 . 3 x = 243
c, 2 x . 2 4 = 1024
d, 49 . 7 x = 2401
a, 2 x . 2 2 = 32
2 x + 2 = 2 5
x + 2 = 5
x = 3
Vậy x = 3
b, 27 . 3 x = 243
3 3 . 3 x = 3 5
3 3 + x = 3 5
x + 3 = 5
x = 2
Vậy x = 2
c, 2 x . 2 4 = 1024
2 x + 4 = 2 10
x + 4 = 10
x = 6
Vậy x = 6
d, 49 . 7 x = 2401
7 2 . 7 x = 7 4
7 2 + x = 7 4
2 + x = 4
x = 2
Vậy x = 2
Tìm \(x\) biết:
\(\left(\sqrt{3}\right)^x=243\)
\(0,1^x=1000\)
\(\left(\dfrac{1}{2}\right)^x=1024\)
\(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)
\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)
\(5^{x-1}+5^{x+2}=3\)
a: \(\left(\sqrt{3}\right)^x=243\)
=>\(3^{\dfrac{1}{2}\cdot x}=3^5\)
=>\(\dfrac{1}{2}\cdot x=5\)
=>x=10
b: \(0,1^x=1000\)
=>\(\left(\dfrac{1}{10}\right)^x=1000\)
=>\(10^{-x}=10^3\)
=>-x=3
=>x=-3
c: \(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)
=>\(\left(0,2\right)^{x+3}< 0,2\)
=>x+3>1
=>x>-2
d: \(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)
=>\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{3}{5}\right)^{-2}\)
=>2x+1<-2
=>2x<-3
=>\(x< -\dfrac{3}{2}\)
e: \(5^{x-1}+5^{x+2}=3\)
=>\(5^x\cdot\dfrac{1}{5}+5^x\cdot25=3\)
=>\(5^x=\dfrac{3}{25,2}=\dfrac{1}{8,4}=\dfrac{10}{84}=\dfrac{5}{42}\)
=>\(x=log_5\left(\dfrac{5}{42}\right)=1-log_542\)