Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Fan EBXTOS
Xem chi tiết
Nguyễn Văn Hoàng Minh
Xem chi tiết
Nhok's Baka's Ot...
Xem chi tiết
ffjf gjrfj fdf
Xem chi tiết
ffjf gjrfj fdf
18 tháng 12 2016 lúc 15:03

máy đưa câu hỏi của mình lên sai

Aquarius Love
Xem chi tiết
Chi Vũ Khánh
Xem chi tiết
💋Amanda💋
26 tháng 3 2020 lúc 15:42
https://i.imgur.com/Fcx2DSc.jpg
Khách vãng lai đã xóa
Nguyễn Ngọc Lộc
26 tháng 3 2020 lúc 15:46

a, Ta có : \(\left\{{}\begin{matrix}3x+2y=-1\\2x-3y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}6x+4y=-2\\6x-9y=12\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}13y=-14\\2x-3y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=-\frac{14}{13}\\2x-3.\left(-\frac{14}{13}\right)=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=-\frac{14}{13}\\x=\frac{5}{13}\end{matrix}\right.\)

Vậy phương trình trên có nghiệm ( x;y ) = ( \(\frac{5}{13};-\frac{14}{13}\) )

b, ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x-2\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne2\end{matrix}\right.\)

- Ta có : \(\frac{5}{x-2}-\frac{4}{x-1}=3\)

=> \(\frac{5\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{4\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=3\)

=> \(5\left(x-1\right)-4\left(x-2\right)=3\left(x-2\right)\left(x-1\right)\)

=> \(5x-5-4x+8-3x^2+6x+3x-6=0\)

=> \(10x-3x^2-3=0\)

=> \(\left(3x-1\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}x=\frac{1}{3}\\x=3\end{matrix}\right.\) ( TM )

Vậy phương trình trên có tập nghiệm là \(S=\left\{3;\frac{1}{3}\right\}\)

Khách vãng lai đã xóa
fghj
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 9 2019 lúc 21:04

1/ ĐKXĐ:...

\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=4\\\frac{1}{\left(x+1\right)^2-1}+\frac{1}{\left(y+1\right)^2-1}=\frac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=4\\\frac{1}{\left(x+1\right)^2-1}+\frac{1}{\left(y+1\right)^2-1}=\frac{2}{3}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+1=a\\y+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ab=4\\\frac{1}{a^2-1}+\frac{1}{b^2-1}=\frac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\frac{1}{a^2-1}+\frac{1}{\frac{16}{a^2}-1}=\frac{2}{3}\)

\(\Rightarrow a^4-8a^2+16=0\Rightarrow a^2=4\Rightarrow a=\pm2\Rightarrow x=...\)

b/ ĐKXĐ: ...

\(\Rightarrow\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}+\sqrt{2-\frac{1}{y}}-\sqrt{2-\frac{1}{x}}=0\)

\(\Rightarrow\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}+\frac{\frac{1}{x}-\frac{1}{y}}{\sqrt{2-\frac{1}{y}}+\sqrt{2-\frac{1}{x}}}=0\)

\(\Rightarrow\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}+\frac{y-x}{xy\sqrt{2-\frac{1}{y}}+xy\sqrt{2-\frac{1}{x}}}=0\)

\(\Rightarrow\left(\sqrt{y}-\sqrt{x}\right)\left(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{\sqrt{y}+\sqrt{x}}{xy\sqrt{2-\frac{1}{y}}+xy\sqrt{2-\frac{1}{x}}}=0\right)\)

\(\Rightarrow\sqrt{y}=\sqrt{x}\Rightarrow y=x\) (ngoặc phía sau luôn dương)

Thay vào pt đầu:

\(\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{x}}=2\)

Mặt khác áp dụng BĐT \(a+b\le\sqrt{2\left(a^2+b^2\right)}\)

\(\Rightarrow\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{x}}\le\sqrt{2\left(\frac{1}{x}+2-\frac{1}{x}\right)}=2\)

Dấu "=" xảy ra khi và chỉ khi:

\(\frac{1}{\sqrt{x}}=\sqrt{2-\frac{1}{x}}\Rightarrow\frac{1}{x}=2-\frac{1}{x}\Rightarrow x=1\Rightarrow y=1\)

Trầnnhy
Xem chi tiết
Ái nè
Xem chi tiết
Ái nè
13 tháng 2 2020 lúc 21:44

Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((

Khách vãng lai đã xóa
Ngô phương thảo
14 tháng 2 2020 lúc 13:01

\(1,3x-5x+5=-8\)

\(\Leftrightarrow-2x+5+8=0\)

\(\Leftrightarrow-2x=-13\)

\(\Leftrightarrow x=\frac{13}{2}\)

Khách vãng lai đã xóa