Cho C=1+3+3^2+...+3^11
CMR: 1)C chia hết cho 13
2)C chia hết cho 40
Cho C= 1+3+3^2+...+3^11. Chứng minh:
a/ C chia hết cho 13
b/ C chia hết cho 40
\(C=1+3+3^2+...+3^{11}\)
a) \(C=1+3+3^2+...+3^{11}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+3^6\left(1+3+3^2\right)+3^9\left(1+3+3^2\right)\)
\(=13+3^3.13+3^6.13+3^9.13\)
\(=13\left(1+3^3+3^6+3^9\right)⋮13\)
\(\Rightarrow C⋮13\)
b) \(C=1+3+3^2+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=40+3^4.40+3^8.40\)
\(=40\left(1+3^4+3^8\right)⋮40\)
\(\Rightarrow C⋮40\)
C chia het cho ca 13 va 40
a) \(C=1+3+3^2+........+3^{11}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...........+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+.....+3^9.\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(1+3^3+.......+3^9\right)\)
\(=13.\left(1+3^3+.......+3^9\right)⋮13\)( đpcm )
b) \(C=1+3+3^2+.......+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+3^8.\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right).\left(1+3^4+3^8\right)\)
\(=40.\left(1+3^4+3^8\right)⋮40\)( đpcm )
Cho C= 1+3+3^2+3^3+....+3^11 chứng tỏ rằng
a) C chia hết cho 13
b) C chia hết cho 40
C = 1 + 3 + 3^2 + ........ + 3^11 . CMR C :
a, chia hết cho 13
b, chia hết cho 40
C=(1+3+32)+(33+34+35)+...+(39+310+311)
C=13+33(1+3+32)+...+39(1+3+32)
C=13+33.13+...+39.13
C=13(1+33+...+39)
Vì nó có thừa số 13 nên chia hết cho 13 (1+33+...+39 là STN)
C=(1+3+32+33)+(34+35+36+37)+(38+39+310+311)
C=40+34(1+3+32+33)+38(1+3+32+33)
C=40+34.40+38.40
=40(1+34+38)
=>C chia hết cho 40
a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)
\(=3\times91+3^7\times91+...+3^{1987}\times91\)
\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)
\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)
Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.
b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)
\(=3\times820+...+3^{1985}\times820\)
\(=3\times20\times41+...+3^{1985}\times20\times41\)
\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)
Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.
chứng minh rằng :
C = 1+3^2+3^3+...+3^11
C chia hết cho 13
C chia hết cho 40
Ta có : 3C = 3 + 3^2 + 3^3 + ...3^12
=> 3C - C = (3 + 3^2 + 3^3 + ...3^12) - (1+3+3^2+3^3+....+3^11) = 3^12 - 1 = 531440
hay 2C = 531440 => C = 53144 :2 = 265720
265720 = 20440.13 => C chia hết cho 13 ( vì có thừa số 13)
265720 = 6643.40 => C chia hết cho 40 ( vì có thừa số 40)
Cho C=1+3+3^2+3^3+...+3^20. Chứng minh rằng:
a, C chia hết cho 13
b, C chia hết cho 40
Cho C= 1+3+3^2+3^3+...+3^11. Chứng minh rằng
a, C chia hết cho 13
b, C chia hết cho 40
\(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+......+\left(3^9+3^{10}+3^{11}\right)\)
\(C=13.1+3^3.13+......+3^9.13\)
\(C=13.\left(1+3^3+3^6+3^9\right)\)
Chia hết cho 13
\(C=\left(1+3+3^2+3^3\right)+......+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(C=40.1+40.3^4+40.3^8\)
\(C=40.\left(1+3^4+3^8\right)\)
Chia hết cho 40
Cho A = 1-3+3 mũ 2-3 mũ 3+3 mũ 4-3 mũ 5+.....+3 mũ 98-3 mũ 99 chứng to A chia hết cho 20
cho C=1+3+3^2+........+3^11
chứng minh rằng:
a)C chia hết cho 13
b)C chia hết cho 40
Cho C= 1+3+32+...+311. CMR:
a) C chia hết cho 40
b) C chia hết cho 13
Cho C= 1+3+32+...+311
a) \(C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+3^8.\left(1+3+3^2+3\right)\)
\(=40+3^4.40+3^8.40\)
\(=40.\left(1+3^4+3^8\right)\) chia hết cho 40.
b) \(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^9.\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^9.13\)
\(=13.\left(1+3^3+3^6+3^9\right)\)chia hết cho 13
=> điều phải chứng minh
cho C = 1+3+32+.......+311chứng minh rằng
a,C chia hết cho 13
b,C chia hết cho 40