Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cô Gái Mùa Đông
Xem chi tiết
Ngô Văn  Nhật Minh
28 tháng 1 2021 lúc 19:38

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111+11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111-2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222=?

Khách vãng lai đã xóa
Ngô Văn  Nhật Minh
28 tháng 1 2021 lúc 19:46

8

555566655

5665656746565656+5965=?

Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
28 tháng 1 2021 lúc 19:48

Ta có: \(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{y}-\frac{1}{y+1}+\frac{1}{z}-\frac{1}{z+1}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)\(-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) và \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) ( với a,b,c dương)

Dấu '=' xảy ra <=> a=b=c

Lại có: \(\frac{1}{x+1}\le\frac{1}{4}\left(\frac{1}{x}+1\right);\frac{1}{y+1}\le\frac{1}{4}\left(\frac{1}{y}+1\right);\frac{1}{z+1}\le\frac{1}{4}\left(\frac{1}{z}+1\right)\)

\(\Rightarrow P=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\ge\)\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{1}{4}\left(\frac{1}{x}+1+\frac{1}{y}+1+\frac{1}{z}+1\right)\)

\(=\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{3}{4}\ge\frac{3}{4}\frac{9}{x+y+z}-\frac{3}{4}=\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)

Vậy GTNN của P= 3/2 <=> x=y=z=1

Khách vãng lai đã xóa
Huy Lê
Xem chi tiết
Tran Le Khanh Linh
19 tháng 8 2020 lúc 22:30

Bài này có cách lập bảng biến thiên,nhưng mình sẽ làm cách đơn giản

Từ giả thiết \(x^2+y^2+z^2=1\Rightarrow0< x,y,z< 1\)

Áp dụng Bất Đẳng Thức Cosi cho 3 cặp số dương \(2x^2;1-x^2;1-x^2\)

\(\frac{2x^2+\left(1-x^2\right)+\left(1-x^2\right)}{3}\ge\sqrt[3]{2x^2\left(1-x^2\right)^2}\le\frac{2}{3}\)

\(\Leftrightarrow x\left(1-x^2\right)\le\frac{2}{3\sqrt{3}}\Leftrightarrow\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\Leftrightarrow\frac{x}{y^2+z^2}\ge\frac{3\sqrt{3}}{2}x^2\left(1\right)\)

Tương tự ta có \(\hept{\begin{cases}\frac{y}{z^2+x^2}\ge\frac{3\sqrt{3}}{2}y^2\left(2\right)\\\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}z^2\left(3\right)\end{cases}}\)

Cộng các vế (1), (2) và (3) ta được \(\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{\sqrt{3}}{3}\)

Khách vãng lai đã xóa
Harry James Potter
Xem chi tiết
Đỗ Thị Trà My
Xem chi tiết
zZz Cool Kid_new zZz
12 tháng 6 2020 lúc 15:29

\(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)

\(\ge3\sqrt[3]{\frac{1}{xyz\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)

Mà theo BĐT AM - GM ta có tiếp:

\(xyz\le\left(\frac{x+y+z}{3}\right)^3=1\)

\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\le\left(\frac{x+y+z+3}{3}\right)^3=8\)

\(\Rightarrow P\le\frac{3}{2}\)

Đẳng thức xảy ra tại x=y=z=1

Vậy..................

Khách vãng lai đã xóa
Sherry
Xem chi tiết
tth_new
9 tháng 2 2019 lúc 15:56

Ta có: \(\frac{x+1}{y^2+1}=\left(x+1\right).\frac{1}{y^2+1}=\left(x+1\right)\left(1-\frac{y^2}{y^2+1}\right)\)

\(\ge\left(x+1\right)\left(1-\frac{y^2}{2y}\right)=x+1-\frac{y\left(x+1\right)}{2}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế:

\(P\ge\left(x+y+z+3\right)-\frac{x\left(z+1\right)+y\left(x+1\right)+z\left(y+1\right)}{2}\)

\(=6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\) (*)

Lại có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

Thật vậy,ta có: BĐT \(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

Thay vào (*),ta có: \(P\ge6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\)

\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}=6-\frac{3+3}{2}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=3\Leftrightarrow x=y=z=1\)

tth_new
9 tháng 2 2019 lúc 18:25

Bài t đúng 100% nhá,đứa nào tk sai t nhở? ngon vô làm lại=)

Nguyễn Thị Mát
Xem chi tiết
zZz Cool Kid_new zZz
5 tháng 11 2019 lúc 19:46

\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(y^2+1\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\ge x+1-\frac{xy+y}{2}\)

Tương tự ta có:

\(\frac{y+1}{z^2+1}\ge y+1-\frac{yz+z}{2}\)

\(\frac{z+1}{1+x^2}\ge z+1-\frac{zx+x}{2}\)

Cộng vế theo vế ta có:

\(Q\ge3+\left(x+y+z\right)-\frac{x+y+z+xy+yz+zx}{2}\)

\(=3+\frac{x+y+z-xy-yz-zx}{2}\)

Có BĐT phụ sau:

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ( tự cm )

\(\Rightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=3\)

Khi đó \(P\ge3\)

Dấu "=" xảy ra tại \(x=y=z=1\)

Khách vãng lai đã xóa
Thu Phương Nguyễn
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
25 tháng 4 2021 lúc 9:45

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

Khách vãng lai đã xóa
๖ۣۜmạnͥh2ͣkͫ5ツ
Xem chi tiết
Con Chim 7 Màu
15 tháng 4 2019 lúc 10:52

Bạn kia làm ra kết quả đúng nhưng cách làm thì tào lao nhưng vẫn ra ???

Áp dụng BĐT Cô-si ta có:

\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}\)

Tương tự:\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\frac{3}{2}\),\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}\)

Cộng vế với vế của 3 BĐT trên ta được:

\(P+\frac{x+y+z}{2}+\frac{\left(x+y+z\right)+3}{4}\ge\frac{9}{2}\)

\(\Leftrightarrow P+\frac{3}{2}+\frac{6}{4}\ge\frac{9}{2}\)

\(\Leftrightarrow P\ge\frac{3}{2}\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}\frac{1}{x^2+x}=\frac{x}{2}=\frac{x+1}{4}\\\frac{1}{y^2+y}=\frac{y}{2}=\frac{y+1}{4}\\\frac{1}{z^2+z}=\frac{z}{2}=\frac{z+1}{4},x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy \(P_{min}=\frac{3}{2}\)khi \(x=y=z=1\)

Áp dụng bđt Bunhiacopski ta có

\(P\ge\frac{9}{x^2+y^2+z^2+x+y+z}\ge\frac{9}{2\left(x+y+z\right)}=\frac{9}{6}=\frac{3}{2}.\)

Dấu "=" xảy ra khi x=y=z=1

Le Trinh
11 tháng 10 2019 lúc 22:12

lớp 8 đã học bất đẳng thức Bunhiacopski rồi à

Guyn
Xem chi tiết