Chứng tỏ phân số sau tối giản: B=\(\frac{4x+3}{x+1}\)
Chứng tỏ rằng các phân sô sau tối giản với mọi phân số:
\(A,\frac{n+1}{2n+3}\)\(B,\frac{2n+3}{4n+8}\)
a) Vì phân số n+1/2n+3 tối giản với mọi phân số nên ƯCLN(n+1; 2n+3) =1. Gọi ƯCLN(n+1; 2n+3) = d
=> n+1 \(⋮\)d
2n+3 \(⋮\)d
=> 2(n+1) \(⋮\)d
2n+ 3 \(⋮\)d
=> 2n+2 \(⋮\)d
2n+3 \(⋮\)d
=> 2n+3 - 2n -2 \(⋮\)d
=> 1 \(⋮\)d
=> d =1
Vì d= 1 nên phân số n+1/2n+3 là phân số tối giản
Phần b cũng thế nha
Gọi ƯCLN(n + 1 ; 2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)
=> \(1⋮d\Rightarrow d=1\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{2n+3}\) là phân số tối giản
b Gọi ƯCLN(2n + 3 ; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d}\)
=> \(2⋮d\Rightarrow d\inƯ\left(2\right)\Rightarrow d\in\left\{1;2\right\}\)
Vì \(2n+3\)là số lẻ với mọi n nguyên
=> 2n + 3 không chia hết cho 2
=> \(d\ne2\)=> d = 1
Khi d = 1 , 2n + 3 ; 4n + 8 là 2 số nguyên tố cùng nhau
=> B là phân số tối giản
a) Gọi d là ƯC( n+1 ; 2n+3 )
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1;2n+3\right)=1\)
=> \(\frac{n+1}{2n+3}\)tối giản ( đpcm )
b) Gọi d là ƯC( 2n+3 ; 4n+8 )
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow4n+8-4n-6⋮d\)
\(\Rightarrow2⋮d\Rightarrow d=\left\{1;2\right\}\)
* \(d=2\Rightarrow2n+3⋮̸d̸\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\)tối giản ( đpcm )
Chứng tỏ phân số n+1/3n+2 là phân số tối giản với mọi nguyên n
Chứng tỏ a/b tối giản thì a/a+b tối giản.
chứng minh các phân số sau là phân số tối giản :
2n+1/4n+3
4n+1/12n+7
Bạn nào giỏi giúp mik nha, các bạn chỉ cần làm từng phần ra rồi bấm gửi thôi, bạn nào làm đầy đủ 3 phần sớm nhất mình sẽ cho 10 pics anime+ 1 dấu tik =)
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(4n+1,12n+7\right)\).
Suy ra \(\hept{\begin{cases}4n+1⋮d\\12n+7⋮d\end{cases}}\Rightarrow\left(12n+7\right)-3\left(4n+1\right)=4⋮d\Rightarrow4n⋮d\Rightarrow1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Bài 1: Chứng tỏ các phân số sau tối giản:
a) A = n+3 / 2n+7 tối giản với n ∈ N
b) B = 5n+7 / 2n+3 tối giản với n ∈ N
c) C = 2n+1 / 3n+1 tối giản với n ∈ N
Giúp với ạ cần gấp
a: Gọi d=ƯCLN(2n+7;n+3)
=>2n+7-2n-6 chia hết cho d
=>1 chia hết cho d
=>d=1
=>phân số tối giản
b: Gọi d=ƯCLN(5n+7;2n+3)
=>10n+14-10n-15 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
Chứng tỏ phân số sau là phân số tối giản
\(\frac{n^3+2n}{n^4+3n^2+1}\)
Chứng tỏ rằng các phân số tối giản sau với mọi số tự nhiên N.
a. \(\frac{n+1}{2n=3}\) b. \(\frac{2n+3}{4n+8}\)
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau
Câu b lm tương tự
chứng tỏ rằng phân số sau tối giản với mọi số tự nhiên
A=\(\frac{n+1}{2n+3}\)
Gọi d là WCLN (n + 1; 2n + 3) nên ta có :
\(n+1⋮d\) và \(2n+3⋮d\)
\(\Rightarrow2\left(n+1\right)⋮d\) và \(2n+3⋮d\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Do đó : \(A=\frac{n+1}{2n+3}\) tối giản (ĐPCM)
Gọi d= ƯCLN(n+1;2n+3)
=> n+1 :d
2n+3 : d ( mình viết dấu : thay cho dấu chia hết nhé)
=>2.(n+1) :d
2n+3 :d
=>2n+2:d
2n+3:d
=>(2n+3)-(2n+2):d
=>1:d
=>d=1
Vậy ƯCLN(n+1;2n+3)=1
Vì ƯCLN(n+1;2n+3)=1 nên A tối giản với n là số tự nhiên
dễ
Gọi d là ƯCLN(n+1;2n+3)
=>n+1chia hết cho d=>2(n+1) chia hết cho d=>2n+2 chia hết cho d
=>2n+3 chia hết cho d
=>(2n+2)-(2n+3) chia hết cho d
=>2n+2-2n-3 chia hết cho d
=>-1 chia hết cho d
=> d = -1
=> n+1 và 2n+3 là hai số nguyên tố cùng nhau
Vậy n+1/2n+3 là phân số tối giản
tk và kb nhé!!!
Cho phân số \(\frac{a}{b}\) là phân số tối giản . Chứng tỏ rằng phân số \(\frac{a}{a+b}\) cũng là phân số tối giản
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Chứng tỏ rằng nếu phân số \(\frac{a}{b}\)là phân số tối giản thì phân số \(\frac{a+b}{b}\)cũng là phân số tối giản.
Giả sử \(\frac{a+b}{b}\) không là phân số tối giản
Gọi ƯCLN của a+b;a là d ( d khác 1 )
Khi đó:\(a+b⋮d;b⋮d\)
\(\Rightarrow\left(a+b\right)-b⋮d\)
\(\Rightarrow a⋮d\) mà b chia hết cho d suy ra \(\frac{a}{b}\) không tối giản ( vô lý )
Vậy ta có đpcm
Chứng tỏ rằng phân số sau là phân số tối giản với mọi số tự nhiên n: \(\frac{n+1}{2n+3}\)
Gọi ƯCLN(n+1; 2n+3) là d. Ta có:
n+1 chia hết cho d => 2n+2 chia hết cho d
2n+3 chia hết cho d
=> 2n+3-(2n+2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> \(\frac{n+1}{2n+3}\)là phân số tối giản (Đpcm)
gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:
\(\text{(2n+3)-(n-1) ⋮d}\)
\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow2n-2n+3-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n