Tìm giá trị của biểu thức sau:
\(A=\sin\alpha\times\cos\alpha\)biết \(\tan\alpha+\cot\alpha=3\)
Cho \(\tan\alpha=\dfrac{3}{5}\). Tính giá trị của các biểu thức sau:
M=\(\dfrac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
N=\(\dfrac{\sin\alpha\times\cos\alpha}{\sin^2\alpha-\cos^2\alpha}\)
Lời giải:
\(M=\frac{\frac{\sin a}{\cos a}+1}{\frac{\sin a}{\cos a}-1}=\frac{\tan a+1}{\tan a-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=-4\)
\(N = \frac{\frac{\sin a\cos a}{\cos ^2a}}{\frac{\sin ^2a-\cos ^2a}{\cos ^2a}}=\frac{\frac{\sin a}{\cos a}}{(\frac{\sin a}{\cos a})^2-1}=\frac{\tan a}{\tan ^2a-1}=\frac{\frac{3}{5}}{\frac{3^2}{5^2}-1}=\frac{-15}{16}\)
Câu 50**: Cho góc nhọn tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\) bằng
A. \(tan^2\alpha\) ; B . \(cot^2\alpha\) ; C . 0 ; D. 1 .
Câu 50**: Cho góc nhọn α tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\)bằng
A. \(tan^2\alpha\) ; B . \(cot^2\) α ; C . 0 ; D. 1 .
giải hộ mik vs
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của góc nhọn \(\alpha\)
a) A = \(\frac{\cot^2\alpha-\cos^2\alpha}{\cot^2\alpha}-\frac{\sin\alpha.\cos\alpha}{\cot\alpha}\)
b) B = \(\left(\cos\alpha-\sin\alpha\right)^2+\left(\cos\alpha+\sin\alpha\right)^2+\cos^4\alpha-\sin^4\alpha-2\cos^2\alpha\)
c) C = \(\sin^6x+\cos^6x+3\sin^2x.\cos^2x\)
a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)
\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)
\(=\left(1-sin^2a\right)-sin^2a=1\)
b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)
\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2-sin^2a-cos^2a=2-1=1\)
c/ \(C=sin^6x+cos^6x+3sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3sin^2x.cos^2x\)
\(=sin^4x-sin^2x.cos^2x+cos^4x+3sin^2x.cos^2x\)
\(=sin^4x+cos^4x+2sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2=1\)
biết cot a =1/2. giá trị biểu thức A = \(\dfrac{4\sin\alpha+5\cos\alpha}{2\sin\alpha-3\cos\alpha}\) bằng bao nhiêu?
mình làm r nha
https://hoc24.vn/cau-hoi/biet-cotadfrac12-gia-tri-bieu-thuc-adfrac4sinalpha5cosalpha2sinalpha-3cosalpha-bang-bao-nhieughi-ro-tung-loi-giai-nha.5724337531039
Biết cot α=\(\sqrt{5}\). Tính giá trị biểu thức: A=\(\dfrac{\sin^2\alpha+\cos^2\alpha}{\sin\alpha.\cos\alpha}\)
Ta có: \(cot\alpha=\dfrac{cos\alpha}{sin\alpha}=\dfrac{cos^2\alpha}{sin\alpha.cos\alpha}=\sqrt{5}\)
Lại có: \(\dfrac{1}{cot\alpha}=tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{sin^2\alpha}{cos\alpha.sin\alpha}=\dfrac{1}{\sqrt{5}}\)
\(\Rightarrow A=\dfrac{cos^2\alpha}{sin\alpha.cos\alpha}+\dfrac{sin^2\alpha}{sin\alpha.cos\alpha}=\sqrt{5}+\dfrac{1}{\sqrt{5}}=\dfrac{6}{\sqrt{5}}=\dfrac{6\sqrt{5}}{5}\)
Ta có : cot α = \(\sqrt{5}\Rightarrow\dfrac{cos\alpha}{sin\alpha}=\sqrt{5}\Rightarrow cos\alpha=\sqrt{5}.sin\alpha\)
\(A=\dfrac{sin^2\alpha+cos^2\alpha}{sin\alpha.cos\alpha}\)
\(A=\dfrac{sin^2\alpha+\left(\sqrt{5}sin\alpha\right)^2}{sin\alpha.\sqrt{5}sin\alpha}=\dfrac{sin^2\alpha+5sin^2\alpha}{\sqrt{5}sin^2\alpha}\)
\(A=\dfrac{6sin^2\alpha}{\sqrt{5}sin^2\alpha}=\dfrac{6}{\sqrt{5}}=\dfrac{6\sqrt{5}}{5}\)
tính giá trị của biểu thức sau
A=\(\frac{tan^215độ-1}{cot75độ-1}-cot75độ\)
B=\(\sin\alpha.\cos\alpha\)biết \(\tan\alpha+\cot\alpha=3\)
rút gọn biểu thức
a) \(\left(Sin\alpha+Cos\alpha\right)^2+\left(Sin\alpha-Cos\alpha\right)^2\)
b) \(Sin\alpha.cos\alpha\left(tan\alpha+cot\alpha\right)\)
c) \(cot^2\alpha-Cos^2\alpha\times Cot^2\alpha\)
d) \(tan^2\alpha-Sin^2\alpha\times tan^2\alpha\)
ai giúp e mấy câu này với ạ !!!
tui rất thích lượng giác:
a) = s2 + 2s.c +c2 +s2- 2s.c + c2 =1+1=2
b) = s.c(s/c + c/s) = s.c(s2 + c2) / s.c = 1
.............................bài nào cx dễ
( k có việc j khó, chỉ sợ lòng k bền....)
Chứng minh giá trị các biểu thức sau luôn là hằng số với mọi góc nhọn \(\alpha\)
\(a.\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha\cdot\cos^2\alpha\)
\(b.\cos^2\alpha+\sin^2\alpha+\tan^2\alpha\cdot\cos^2\alpha+\cot^2\alpha\cdot\sin^2\alpha\)