cmr tích của hai số tự nhiên liên tiếp không thê có dạng 3n+1 (n thuộc N)
1.CMR nếu m2-n2 thuộc Tap so Nguyen to thì m và n là hai số tự nhiên liên tiếp
2.Tổng của p số lẻ liên tiếp có phải là 1 số nguyên tố không?
1. thuộc P là thuộc gì ?
2. Có thể có có thể không, tùy vào p.
Ý bạn là Thuộc P là thuộc số nguyên tố đúng không
CMR: Mọi số nguyên tố > 3 đều có dạng 3n+1 hoạc 3n-1(n thuộc N*)
Có phải mọi số tự nhiên có dạng 3n+1 hoặc 3n-1 đều là số nguyên tố hay không
Các bạn giải nhanh nhé mình đang cần gấp
+) Vì nếu số đó lớn hơn 3 có dạng là 3n thì số đó chia hết cho 3 => Hợp số
=> Số đó phải có dạng 3n + 1( chia 3 dư 1) hoặc 3n - 1
Với 3n - 1 tương đương với 3(n-1) + 2 ( chia 3 dư 2)
+) Chưa chắc đã là số nguyên tố , Giả sử n lẻ => 3n lẻ => 3n - 1 hoặc 3n + 1 chẵn => Hợp số
cmr với mọi n thuộc N thì A=(n^4+2n^3+2n)chia hết cho 4 là tích của hai số tự nhiên liên tiếp
1)Tìm x thuộc N để: 3n + 10 chia hết cho n+2
2) Tìm a,b thuộc N biết: a+b = 96 và ƯCLN(a,b) = 12
3) Chứng tỏ số 11112222 là tích của hai số tự nhiên liên tiếp.
1.tìm ba số tự nhiên liên tiếp biết tích của hai số sau lớn hơn tích của hai số đầu là 50
2.Chứng minh rằng biểu thức n(3n-4)-3n(n+1) luôn chia hết cho 7 với mọi số nguyênn
Chứng tỏ rằng 111...1(có n chữ số 1)222...2(có n chữ số 2) là tích của hai số tự nhiên liên tiếp(với n thuộc N*)
111...1222...2 = 111...1. 10n + 222...2 = 111...1. 10n + 2. 111...1 (n chữ số 1)
= 111...1.(10n + 2) (n chữ số 1)
Nhận xét: 10n = 999...9 + 1 (n chữ số 9)
= 9. 111...1 + 1
đặt a = 111...1 => 111...1222...2 = a.(9a +1 + 2) = a.(9a+ 3) = 3a(3a + 1)
hai số 3a ; 3a + 1 là số tự nhiên liên tiếp
=> đpcm
1) Tích của 4 số tự nhiên liên tiếp có phải là 1 số chính phương không?
2) Tìm số tự nhiên n có 2 chữ số, biết rằng 2 số 2n+1 và 3n+1 đồng thời là 2 số chính phương.
3) Có hay không số tự nhiên n để
\(2002+n^2\)
là số chính phương?
1, chứng tỏ rằng :
a, tích của hai số tự nhiên liên tiếp thì chia hết cho 2
b, tích của ba số tự nhiên liên tiếp thì chia hết cho 3
2, chứng tỏ rằng :
A = n2+ n + 1 ( n thuộc N)
a, A không chia hết cho 2
b, A không chia hết cho 5
a, ta có 2 số liên tiếp lần lượt là n và n +1 <=> n^2 +n
giả thiết nếu n là lẻ thì lẻ +lẻ = chẵn; chia hết cho 2
nếu n là chắn thì chẵn bình phg công chẵn sẽ ra chẵn => chia hết cho 2
tích n số tự nhiên liên tiếp có là lũy thừa bậc n của 1 số tự nhiên không