Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn danh hùng
Xem chi tiết
Ankane Yuki
Xem chi tiết
Đinh Đức Hùng
18 tháng 7 2018 lúc 17:00

1/ Xét \(p=2\) thì \(p+2=4\) ko phải số nguyên tố (loại)

\(p=3\) thì \(p+2=5;p+10=13\) là số nguyên tố (TM)

\(p=6k-1\left(k\in N;k\ne0\right)\) thì \(p+10=6k-1+10=6k+9\) chia hết cho 3( Loại)

\(p=6k+1\left(k\in N;k\ne0\right)\) thì \(p+2=6k+3\)chia hết cho 3( Loại)

Vậy \(p=3\)

2/ \(x\left(y-1\right)=5y-12\Leftrightarrow x\left(y-1\right)=5\left(y-1\right)-7\)

\(\Leftrightarrow\left(y-1\right)\left(x-5\right)=-7\) => PT ước số (giải được)

Nguyệt
18 tháng 7 2018 lúc 16:52

bài 1 thiếu đề

nguyen thi thu hoai
18 tháng 7 2018 lúc 17:02

Xét p = 2 \(\Rightarrow\) p + 2 = 4 ko là số nguyên tố.( loại ) (1)

Xét p = 3 \(\Rightarrow\) p + 2 = 5 và p + 10 = 13 là số nguyên tố ( tm ) (2)

Xét p \(\ge\) 3 mà p là số nguyên tố \(\Rightarrow\) p có dạng p = 3k + 1 hoặc p = 3k + 2 

+, Với p = 3k + 1 \(\Rightarrow\) p + 2 = 3k + 1 + 2 = 3k + 3 = 3( k + 1 ) chia hết cho 3 và lớn hơn 3 nên là hợp số ( loại ) (3)

+, Với p = 3k + 2 \(\Rightarrow\) p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4 ) chia hết cho 3 và lớn hơn 3 nên là hợp số ( loại ) (4)

Từ (1), (2), (3) và (4) \(\Rightarrow\) p = 3 tm đk đề bài.

aaaa
Xem chi tiết
Nguyễn Thị Thủy
Xem chi tiết
soyeon_Tiểu bàng giải
20 tháng 6 2016 lúc 14:07

+ Với p = 2 thì p + 2 = 2 + 2 = 4, là hợp số, loại

+ Với p = 3 thì p + 2 = 3 + 2 = 5, p + 10 = 3 + 10 = 13, là số nguyên tố, chọn

+ Với p > 3, do p nguyên tố nên p không chia hết cho 3 => p = 3k + 1 hhoặc p = 3k + 2 (k thuộc N*)

Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3, chia hết cho 3

Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại

Nếu p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12, chia hết cho 3

Mà 1 < 3 < p + 10 => p + 10 là hợp số, loại

Vậy p = 3

O0o_ Kỷ Băng Hà _o0O
20 tháng 6 2016 lúc 14:31

+ Với p = 2 thì p + 2 = 2 + 2 = 4, là hợp số, loại

+ Với p = 3 thì p + 2 = 3 + 2 = 5, p + 10 = 3 + 10 = 13, là số nguyên tố, chọn

+ Với p > 3, do p nguyên tố nên p không chia hết cho 3 => p = 3k + 1 hhoặc p = 3k + 2 (k thuộc N*)

Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3, chia hết cho 3

Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại

Nếu p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12, chia hết cho 3

Mà 1 < 3 < p + 10 => p + 10 là hợp số, loại

Vậy p = 3

O0o_ Kỷ Băng Hà _o0O
20 tháng 6 2016 lúc 14:31

+ Với p = 2 thì p + 2 = 2 + 2 = 4, là hợp số, loại

+ Với p = 3 thì p + 2 = 3 + 2 = 5, p + 10 = 3 + 10 = 13, là số nguyên tố, chọn

+ Với p > 3, do p nguyên tố nên p không chia hết cho 3 => p = 3k + 1 hhoặc p = 3k + 2 (k thuộc N*)

Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3, chia hết cho 3

Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại

Nếu p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12, chia hết cho 3

Mà 1 < 3 < p + 10 => p + 10 là hợp số, loại

Vậy p = 3

Băng Y
Xem chi tiết
Nguyệt Lam
20 tháng 2 2021 lúc 8:13

Câu 1:

a) \(A=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}.\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x-1}{x}\)

        \(=\left[\dfrac{2}{3x}-\dfrac{2}{3x}+\dfrac{2x}{x+1}+\dfrac{2}{x+1}\right]\dfrac{x}{x-1}\)

        \(=\left[\dfrac{2x}{x+1}+\dfrac{2}{x+1}\right]\dfrac{x}{x-1}\)

        \(=\dfrac{2x+2}{x+1}.\dfrac{x}{x-1}\)

        \(=\dfrac{2\left(x+1\right)}{x+1}.\dfrac{x}{x-1}\)

        \(=2.\dfrac{x}{x-1}\)

        \(=\dfrac{2x}{x-1}\)

Nguyễn Lê Phước Thịnh
20 tháng 2 2021 lúc 22:48

Câu 1: 

ĐKXĐ: \(x\notin\left\{0;-1;1\right\}\)

a) Ta có: \(A=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\left(\dfrac{x+1}{3x}-x-1\right)\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\left(\dfrac{x+1}{3x}-\dfrac{3x\left(x+1\right)}{3x}\right)\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2\left(x+1\right)}{3x\left(x+1\right)}-\dfrac{2\cdot\left(-3x^2-2x+1\right)}{3x\left(x+1\right)}\right):\dfrac{x-1}{x}\)

\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)

\(=\dfrac{6x^2+6x}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)

\(=\dfrac{6x\left(x+1\right)}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)

\(=2\cdot\dfrac{x}{x-1}=\dfrac{2x}{x-1}\)

b) Để A nguyên thì \(2x⋮x-1\)

\(\Leftrightarrow2x-2+2⋮x-1\)

mà \(2x-2⋮x-1\)

nên \(2⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(2\right)\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;3\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{2;3\right\}\)

Lê Nhật Phúc
Xem chi tiết
Nguyễn Thục Hiền
Xem chi tiết
Nguyễn Đặng Linh Nhi
30 tháng 12 2017 lúc 16:16

a) (x+1)+(x+2)+(x+3)+........+(x+100)=5750

(x+x+...+x)+(1+2+3+...+100)=5750

(x.100)+(1+100).100:2=5750

(x.100)+5050=5750

x.100=5750-5050

x.100=700

x       =700:100

x       = 7

Vậy x = 7 

c)  trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên) 

+) Nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1) 

+) Nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mãn điều kiện đề bài) (2) 

+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3) 

Từ (1), (2), (3) suy ra p = 3 là giá trị cần tìm. 

Vậy nha còn câu b mình tạm thời chưa biết, chúc bạn học tốt

Nguyễn Thị Thùy Trâm
29 tháng 4 2018 lúc 12:06

ab+2a-b=3

a(b+2)-b=3

a(b+2)-b+2=3+2

(b+2)(a-1)=5

sau đó bạn tìm các nghiệm cho chúng thỏa mãn nhé(cho là hai số trên thuộc ước của 5 rồi tính)

Nguyễn Thị Thùy Trâm
29 tháng 4 2018 lúc 12:10

bài a và c theo mình thì bạn linh nhi nguyễn đặng thêm vào câu a cho hoàn chỉnh

câu c phải xét với số p nguyên tố bé nhất là 2 đã

sau đó thỏa mãn 3 rồi mới xét nhé

Bùi Thị Hằng Trang
Xem chi tiết
Kudo Shinichi
Xem chi tiết
kuroemon
12 tháng 10 2017 lúc 20:33

TỚ CŨNG KHÔNG BIẾT.

CẬU BIẾT HOÁ GIẢI CÚ NÉM ZIC ZẮC KÉP WWW CỦA SHIROEMON KHÔNG ?