RÚT GỌN
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{10}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Rút Gọn
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{10}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
Tham khảo nha bạn !
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\frac{\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
RÚT GỌN
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{10}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Rút Gọn
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{10}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Rút gọn căn thức :
A = \(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)\(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
Rút gọn : \(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{9}}\)
với n >0, ta có :
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)
Gọi biểu thức đã cho là A
\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)
\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)
\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)
\(A=-\sqrt{1}+\sqrt{9}=2\)
\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=\frac{\sqrt{n}+\sqrt{n+1}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=-\sqrt{n}-\sqrt{n+1}\)
rút gọn biểu thức :
A= \(\dfrac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\).
B= \(\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\).
C= \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\).
Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)
=1
Rút gọn biểu thức:
\(a,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(b,\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}+\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}\)
\(b,\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}+\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}\)
\(=\frac{2+\sqrt{3}}{1-\sqrt{3-2\sqrt{3}+1}}+\frac{2-\sqrt{3}}{1+\sqrt{3+2\sqrt{3}+1}}\)
\(=\frac{2+\sqrt{3}}{1-\sqrt{\left(\sqrt{3}-1\right)^2}}+\frac{2-\sqrt{3}}{1+\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\frac{2+\sqrt{3}}{1-\left(\sqrt{3}-1\right)}+\frac{2-\sqrt{3}}{1+\sqrt{3}+1}\)
\(=\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}\)
\(=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=\frac{4+4\sqrt{3}+3+4-4\sqrt{3}+3}{4-3}\)
\(=14\)
\(a,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+4+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\)
\(=\frac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2}+\frac{\sqrt{2}.\sqrt{2}+\sqrt{2}.\sqrt{3}+\sqrt{2}.2}{\sqrt{2}+\sqrt{3}+2}\)
\(=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}\)
\(=1+\sqrt{2}\)
rút gọn
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}\) = \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}\)
= \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\) = \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)
rút gọn
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}\)
=\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)= \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
Ta có :
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}\)
\(=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)