SO SÁNH
\(8và\)\(\sqrt{15}+\sqrt{17}\)
SO SÁNH
\(8và\sqrt{15}+\sqrt{17}\)
giả sử \(8>\sqrt{15}+\sqrt{17}\)
\(\Leftrightarrow64>32+2\sqrt{15.17}\)
\(\Leftrightarrow16>2\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)
Vậy \(8>\sqrt{15}+\sqrt{17}\)
giải thích thêm cho bạn dễ hiểu:
Ta có: \(\left(\sqrt{15}+\sqrt{17}\right)=15+17+2\sqrt{15.17}\)
\(32+\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)
Ta có: \(8=\sqrt{16}+\sqrt{16}\)
\(\left(\sqrt{16}+\sqrt{16}\right)^2=16+16+2.\sqrt{16.16}=32+2.\sqrt{256}\)
\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2.\sqrt{\left(15.17\right)}=32+2.\sqrt{255}\)
Vì 255 > 256 => \(\sqrt{256}>\sqrt{255}\)
\(\Rightarrow32+2.\sqrt{256}>32+2.\sqrt{255}\)
\(\Rightarrow\sqrt{16}+\sqrt{16}>\sqrt{15}+\sqrt{17}\)
\(\Rightarrow8>\sqrt{15}+\sqrt{17}\)
So sánh:
\(\sqrt{2}+\sqrt{3}và\sqrt{10}\)
\(8và\sqrt{15}+\sqrt{17}\)
So sánh A = \(\sqrt{17}-\sqrt{15}\) và B = \(\sqrt{15}-\sqrt{13}\)
\(A=\dfrac{2}{\sqrt{17}+\sqrt{15}}\) ; \(B=\dfrac{2}{\sqrt{15}+\sqrt{13}}\)
Mà \(\sqrt{17}+\sqrt{15}>\sqrt{15}+\sqrt{13}>0\)
\(\Rightarrow\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{15}+\sqrt{13}}\)
\(\Rightarrow A< B\)
\(A=\sqrt{17}-\sqrt{15}=\dfrac{2}{\sqrt{17}+\sqrt{15}}\)
\(B=\sqrt{15}-\sqrt{13}=\dfrac{2}{\sqrt{13}+\sqrt{15}}\)
mà \(\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{13}+\sqrt{15}}\)
nên A<B
1) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk vs ah mk cần gấp
b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)
mà 80>75
nên \(4\sqrt{5}>5\sqrt{3}\)
SO SÁNH
\(16và\sqrt{15}.\sqrt{17}\)
\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}\)
\(16=\sqrt{16^2}\)
Ta có: \(15.17=\left(16-1\right)\left(16+1\right)=16^2-1< 16^2\)
\(\Rightarrow\)\(\sqrt{15.17}< \sqrt{16^2}\)
\(\Rightarrow\) \(\sqrt{15}.\sqrt{17}< 16\)
1) có bao nhiêu giá trị nguyên của x để biểu thức
\(M=\sqrt{x+4}+\sqrt{2-x}\) có nghĩa
2) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk nhé mk cần gấp
Bài 1:
Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)
Số giá trị nguyên thỏa mãn điều kiện là:
\(\left(2+4\right)+1=7\)
So sánh \(8\)và \(\sqrt{15}+\sqrt{17}\)
8 lớn hơn \(\sqrt{15}\)+\(\sqrt{17}\)
vì \(\sqrt{15}\)+\(\sqrt{17}\)=7,997,,
So sánh \(16\)và \(\sqrt{15}\cdot\sqrt{17}\)
16>căn 15 nhân căn 17, do can 5 nhan can 17 =15,968........<16
chúc bn học tốt!!!!!!!
Ta có \(256>255\Leftrightarrow256>15.17\)
\(\Leftrightarrow\sqrt{256}>\sqrt{15.17}\)
\(\Leftrightarrow16>\sqrt{17}.\sqrt{15}\)
So sánh : 8 và \(\sqrt{15}+\sqrt{17}\) (Không dùng máy tính)
Giả sử \(8< \sqrt{15}+\sqrt{17}\)
\(\Leftrightarrow64< 15+2\sqrt{15.17}+17\)(Bình phương hai vế)
\(\Leftrightarrow32< 2\sqrt{15.17}\)
\(\Leftrightarrow16< \sqrt{15.17}\)
\(\Leftrightarrow16< \sqrt{\left(16-1\right)\left(16+1\right)}\)
\(\Leftrightarrow\sqrt{16^2}< \sqrt{16^2-1}\)
\(\Leftrightarrow16^2< 16^2-1\)(vô lí)
Chứng minh tương tự điều giả sử \(8=\sqrt{15}+\sqrt{17}\)
Vậy \(8>\sqrt{15}+\sqrt{17}\)
https://olm.vn/hoi-dap/detail/61596070678.html
bn coppy link này nhé, có bài mak bn đang cần đấy
Ta có:\(8=4+4=\sqrt{16}+\sqrt{16}\)
\(\Rightarrow\left(\sqrt{16}+\sqrt{16}\right)^2=16+16+2\cdot\sqrt{16^2}\)
Mà \(\sqrt{16^2}=\sqrt{15\cdot16+16}>\sqrt{15\cdot16+15}=\sqrt{15\cdot17}\)
Nên suy ra:
\(16+16+2\cdot\sqrt{16^2}=32+2\cdot\sqrt{16^2}>32+2\cdot\sqrt{15\cdot17}=15+17+2\cdot\sqrt{15\cdot17}\)
\(\Leftrightarrow8>\sqrt{15}+\sqrt{17}\)