Giải hệ pt
{x-y-xy=-5 và x^2-y^2- xy= 19
Giải hệ pt:
x^2+y^2+xy=37
Và x^2+z^2+xz=28
Và y^2+z^2+yz=19
đề đây à \(\int^{x^2+y^2+xy=37}_{\int^{x^2+z^2+xz=38}_{y^2+z^2+yz=19}}\)
Giải hệ pt
x²⁺y²⁻x-2y=19
xy(x-1)(y-2)=-20
Ta có a^2 luôn chia 3 dư 1 hoặc 0 b^2 luôn chia 3 dư 1
=> a^2 + b^2 chia 3 dư 2 hoặc 0 mà theo đề bài a^2 + b^2 chia hết cho 3 nên a^2 chia hết cho 3 và b^2 chia hết cho 3
=> a,b đều chia hết cho 3
Giúp Đi PLS
Giải hệ pt: a)x^3+y^3=2 và x^2+y^2=2
b)x^3+y^3+xy=3 và xy+x+y=3
a) Ta thấy \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\) và \(x^2+y^2=\left(x+y\right)^2-2xy\) nên nếu đặt \(x+y=S,xy=P\) thì ta có hệ: \(\left\{{}\begin{matrix}S^3-3SP=2\\S^2-2P=2\end{matrix}\right.\) . Từ pt (2) suy ra \(P=\dfrac{S^2-2}{2}\). Thay vào (1), ta có \(S^3-3S.\dfrac{S^2-2}{2}=2\) \(\Leftrightarrow-S^3+6S-4=0\) hay \(S^3-6S+4=0\)
Đến đây ta dễ dàng nhẩm ra được \(S=2\). Do đó ta lập sơ đồ Horner:
\(x\) | 1 | 0 | -6 | 4 |
\(2\) | 1 | 2 | -2 | 0 |
Nghĩa là từ \(S^3-6S+4=0\) ta sẽ có \(\left(S-2\right)\left(S^2+2S-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}S=2\\S=-1\pm\sqrt{3}\end{matrix}\right.\).
Nếu \(S=2\) thì \(P=\dfrac{S^2-2}{2}=1\). Ta thấy \(S^2-4P=0\) nên x, y sẽ là nghiệm của pt \(X^2-2X+1=0\Leftrightarrow\left(X-1\right)^2=0\Leftrightarrow X=1\) hay \(\left(x;y\right)=\left(1;1\right)\).
Nếu \(S=-1+\sqrt{3}\) thì \(P=\dfrac{S^2-2}{2}=1-\sqrt{3}\). Ta thấy \(S^2-4P>0\) nên x, y là nghiệm của pt \(X^2-\left(\sqrt{3}-1\right)X+1-\sqrt{3}=0\). \(\Delta=2\sqrt{3}\) nên \(X=\dfrac{\sqrt{3}-1\pm\sqrt{2\sqrt{3}}}{2}\) hay \(\left(x;y\right)=\left(\dfrac{\sqrt{3}-1+\sqrt{2\sqrt{3}}}{2};\dfrac{\sqrt{3}-1-2\sqrt{3}}{2}\right)\) và hoán vị của nó.
Nếu \(S=-1-\sqrt{3}\) thì \(P=\dfrac{S^2-2}{2}=1+\sqrt{3}\). Mà \(S^2-4P=-2\sqrt{3}< 0\) nên không tìm được nghiệm (x; y)
Như vậy hệ phương trình đã cho có các cặp nghiệm \(\left(1;1\right);\left(\dfrac{\sqrt{3}-1+\sqrt{2\sqrt{3}}}{2};\dfrac{\sqrt{3}-1-\sqrt{2\sqrt{3}}}{2}\right)\)\(\left(\dfrac{\sqrt{3}-1-\sqrt{2\sqrt{3}}}{2};\dfrac{\sqrt{3}-1+2\sqrt{3}}{2}\right)\)
b) Ta thấy \(x^3+y^3+xy=\left(x+y\right)^3-3xy\left(x+y\right)+xy\) nên nếu đặt \(S=x+y,P=xy\) thì ta có hệ \(\left\{{}\begin{matrix}S^3-3SP+P=3\\S+P=3\end{matrix}\right.\), suy ra \(P=3-S\)
\(\Rightarrow S^3-3S\left(3-S\right)+3-S=3\)
\(\Leftrightarrow S^3-10S+3S^2=0\)
\(\Leftrightarrow S\left(S^2+3S-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}S=0\\S=2\\S=-5\end{matrix}\right.\)
Nếu \(S=0\) thì \(P=3\). Khi đó vì \(S^2-4P< 0\) nên không tìm được nghiệm (x; y)
Nếu \(S=2\) thì suy ra \(P=1\). Ta có \(S^2-4P=0\) nên x, y là nghiệm của pt \(X^2-2X+1=0\Leftrightarrow X=1\) hay \(\left(x;y\right)=\left(1;1\right)\)
Nếu \(S=-5\) thì suy ra \(P=8\). Ta có \(S^2-4P< 0\) nên không thể tìm được nghiệm (x; y).
Như vậy hpt đã cho có nghiệm duy nhất \(\left(1;1\right)\)
giải hệ pt a)2x+3y=5 và 4x-5y=1
b)xy-x-y=3 và x^2+y^2-xy=1
c)x+2y+3z=4 và 2x+3y-4z=-3 và 4x+y-z=-4
a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)
Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)
giải hệ pt : x/y+y/x=5/2
x^2 +xy = 5-y
Giải các hệ pt và các pt sau:
1. (x+1)(y-1)=xy+4 (1)
(2x-4)(y+1)=2xy+5(2)
2. \(x^2+x-2\sqrt{x^2+x+1}+2=0\)
1.
HPT \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)
Vậy.............
2.
ĐKXĐ: $x\in\mathbb{R}$
$x^2+x-2\sqrt{x^2+x+1}+2=0$
$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$
$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$
$\Rightarrow \sqrt{x^2+x+1}=1$
$\Rightarrow x^2+x=0$
$\Leftrightarrow x(x+1)=0$
$\Rightarrow x=0$ hoặc $x=-1$
Giải hệ pt: (1) x+y+xy= -1 (2) x^2+y^2-xy= 7
\(\left\{{}\begin{matrix}x+y+xy=-1\left(1\right)\\x^2+y^2-xy=7\end{matrix}\right.\)\(\Rightarrow x^2+y^2+x+y=6\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+x+y=6\)
\(\Leftrightarrow xy=\frac{\left(x+y\right)^2+x+y-6}{2}\)
Thay vào (1):\(2x+2y+\left(x+y\right)^2+x+y-6=-2\)
\(\Rightarrow\left[{}\begin{matrix}x+y=1\\x+y=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}xy=-2\\xy=3\end{matrix}\right.\)
Vậy x,y là nghiệm của pt:\(\left[{}\begin{matrix}X^2-X-2=0\\X^2+4X+3=0\end{matrix}\right.\)
Đến đây tự tìm x,y.
giải hệ pt \(\left\{{}\begin{matrix}x+xy+y=2\\x^2+xy+y^2=4\end{matrix}\right.\)
Cộng vế với vế:
\(x^2+2xy+y^2+x+y=6\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-6=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=-3\\x+y=2\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=-3\\xy=5\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm của:
\(t^2+3t+5=0\) (vô nghiệm)
TH2: \(\left\{{}\begin{matrix}x+y=2\\xy=0\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm:
\(t^2-2t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(2;0\right);\left(0;2\right)\)
giải hệ pt
a. \(x^2+y=20vàx+y^2=20\)
b. 2x^2-y^2=1 và xy+x^2=2
c. xy+x+y=71 và x^2y+xy^2=880
lấy vế trên trừ dưới bạn có 2 kết quả
thế từng kết quả vào là ra