Chứng minh:
2n+1=2(n+1)+5 (n khác 0)
câu1: cho A= 8. n + 111...1(có n số tự nhiên 1, n thuộc số tự nhiên khác 0). Chứng minh: A chia hết cho 9
Câu 2: tìm n thuộc số tự nhiên khác 0:
a) 2+ 4 + 6 +....+2n = 210
b) 1 + 3+ 5 +... + ( 2n - 1) = 225
Chứng minh rằng với mọi số tự nhiên n khác 0 ta luôn có :
1² + 2² + 3² + .... + n² = n . (n+1).(2n+1)/6
Chứng minh rằng với mọi số tự nhiên n khác 0 ta luôn có :
1² + 2² + 3² + ... + n² = n . ( n + 1 ) . ( 2n + 1 ) / 6
GIÚP EM VỚI Ạ!
Bước 1: Chứng minh công thức đúng cho n = 1. Khi n = 1, ta có: 1² = 1 = 1 . (1 + 1) . (2 . 1 + 1) / 6 = 1. Vậy công thức đúng cho n = 1.
Bước 2: Giả sử công thức đúng cho n = k, tức là 1² + 2² + ... + k² = k . (k + 1) . (2k + 1) / 6. Ta cần chứng minh công thức đúng cho n = k + 1, tức là 1² + 2² + ... + k² + (k + 1)² = (k + 1) . (k + 1 + 1) . (2(k + 1) + 1) / 6.
Bước 3: Chứng minh công thức đúng cho n = k + 1. Ta có: 1² + 2² + ... + k² + (k + 1)² = (k . (k + 1) . (2k + 1) / 6) + (k + 1)² = (k . (k + 1) . (2k + 1) + 6(k + 1)²) / 6 = (k . (k + 1) . (2k + 1) + 6(k + 1) . (k + 1)) / 6 = (k + 1) . ((k . (2k + 1) + 6(k + 1)) / 6) = (k + 1) . ((2k² + k + 6k + 6) / 6) = (k + 1) . ((2k² + 7k + 6) / 6) = (k + 1) . ((k + 2) . (2k + 3) / 6) = (k + 1) . ((k + 1 + 1) . (2(k + 1) + 1) / 6).
Vậy, công thức đã được chứng minh đúng cho mọi số tự nhiên n khác 0.
chứng minh phân số 2n+1 / 2n(n+1) ( n thuộc STN khác 0 ) là phân số tối giản
Gọi d là UWCLN(2n+1,2n(n+1))=1
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\Rightarrow n\left(2n+1\right)⋮d\Rightarrow2n^2+n⋮d\\2n\left(n+1\right)⋮d\Rightarrow2n^2+2n⋮d\end{cases}}\)
\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\Rightarrow2n⋮d\)
Mà\(2n+1⋮d\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Suy ra 2n+1 và 2n(n+1) nguyên tố cùng nhau hay phân số 2n+1/2n(n+1) tồi giản(đpcm)
Cho m+ n =1 và m.n khác 0. Chứng minh rằng:
m/(n^3-1) + n/(m^3-1) = 2(mn-2)/(m^2n^2+3)
Cho m+n=1 và m.n khác 0.
Chứng minh m/(n^3 -1) + n/(m^3 - 1) = 2(mn - 2)/(m^2 . n^2 + 3)
Biết n thuộc N khác 0 và n bé hơn hoặc bằng 3
Chứng minh 2^n > 2n+1
Chứng minh 1n+2n+3n+4n ⋮ 5 ⇔ n không chia hết cho 4(với mọi số tự nhiên n khác 0)
gợi ý : 1 đồng dư 1 (mod 5)
4 đồng dư -1(mod 5)
Cho m+n = 1 và m.n khác 0. Chứng minh rằng:
m/(n^3-1) + n/(m^3-1) = 2(mn-2)/(m^2n^2+3)
chứng minh PS tối gianr (n thuộc N và n khác 0)
a) n/n+1
b) A=2n+1/3n+1
c)12n+1/30n+2
a) \(\frac{77}{74}\)
b)\(\frac{151}{228}\)
c)\(\frac{307}{768}\)
ko chắc là đúng nhưng đúng thì k nhé
a) Gọi ƯCLN(n;n+1) là d
Ta có n chia hết cho d
n+1 chia hết cho d
=> (n+1)-n chia hết cho d
=> 1 chia hết cho d
hay d thuộc Ư 1
=> d thuộc {-1;1}
Vậy n/n+1 là phân số tối giản