Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngoc bich 2
Xem chi tiết
lili
17 tháng 11 2019 lúc 22:27

a) Để a thuộc Z => 8x+6 chia hết cho x^2+1 (do x thuộc Z)

=> (8x+6)(8x-6) chia hết cho x^2+1

=> 64x^2-36 chia hết cho x^2+1

=> 64x^2+64-100 chia hết cho x^2+1

=> 100 chia hết cho x^2+1

=> x^2+1 là ước của 100 

Xong bạn lập bảng liệt kê các ước nguyên dương ra và tìm x là xong.

Khách vãng lai đã xóa
ngoc bich 2
17 tháng 11 2019 lúc 23:24

Giải giúp mình câu b) luôn đi Lili

Khách vãng lai đã xóa
Bạch Dương
Xem chi tiết
Trần Việt Anh
6 tháng 2 2019 lúc 18:05

B)

Vì (7n+6)/(6n+7) chưa tối giản

=>7n+6 và 6n+7 cùng chia hết cho d (d E N,d # 1)

=>(7n+6)-(6n+7) chia hết cho d

=>n-1 chia hết cho d

Mà 6n+7 chia hết cho d

=>(6n+7)-6(n-1) chia hết cho d

=>13 chia hết cho d

=>d E Ư(13)={1;13}

Mà d#1

=>d=13

=>n-1=13k (k E N)

=>n=13k+1

Vậy với n=13k+1 thì (7n+6)/(6n+7) chưa tối giản

Kuroba Kaito
6 tháng 2 2019 lúc 18:13

a) \(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

=> \(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)

=> \(\frac{5}{x}=\frac{1+2y}{6}\)

=> 5.6 = x(1 + 2y)

=> x(1 + 2y) = 30 = 1 . 30 = 30 . 1 = 2 . 15 = 15 . 2 = 5 . 6 = 6. 5 = 3 . 10 = 10 .3

Vì 1 + 2y là số lẽ nên 1  + 2y \(\in\){1; 15; 3; 5}

Lập bảng : 

x 30 2 10 6
1 + 2y 1 15 3 5
 y 0 7 1 2

Vì x và y là số nguyên tố nên ....

Trần Việt Anh
6 tháng 2 2019 lúc 18:13

A)

5/x-y/3=1/6

=>1/6+y/3=5/x

=>1/6+2y/6=5/x

=>1+2y/6=5/x

=>x(1+2y)=30

=>x và 1+2y thuộc ước của 30

Vì 2y chẵn=> 1+2y lẻ

=>1+2y thuộc tập hợp:1;3;5;15;-1;-3;-5;-30

=> x thuộc tập hợp;30;10;6;2;-30;-10;-6;-2

mà x là số ng tố 

=> x = 2

y= ... ( dễ rồi nhaaa )

lequochuy
Xem chi tiết
Vu Ái Vân
Xem chi tiết
Hạ Ngọc Bảo Châu
Xem chi tiết
KCLH Kedokatoji
6 tháng 3 2020 lúc 10:26

a) \(x\in\left\{-2;-1;0;1;2;3;4;5\right\}\)

b)\(x\in\left\{-7;-6;-5;-4;...;5;6\right\}\)

Khách vãng lai đã xóa
wattif
6 tháng 3 2020 lúc 10:26

a,– 2 ≤ x ≤ 5

<=> \(x\in\left\{-2;-3;...;5\right\}\)

Tổng: (-2+2)+(-3+3)+...+0+4+5=9

b,– 8 < x ≤ 6

<=>\(x\in\left\{-7;-6;...;6\right\}\)

Tổng: (-6+6)+(-5+5)+...+0+-7=-7

Khách vãng lai đã xóa
Emma
6 tháng 3 2020 lúc 10:35

a,– 2 ≤ x ≤ 5

Vì – 2 ≤ x ≤ 5 mà x \(\inℤ\)

nên x \(\in\left\{-2;-1;0;1;2;3;4;5\right\}\)

Do đó tổng các số nguyên x là:

(-2 + 2 ) + (-1+1) + (3 + 4 + 5 ) + 0 

= 0 + 0 + 12 + 0

= 12

b,– 8 < x ≤ 6

Vì – 8 < x ≤ 6 mà x \(\inℤ\)

nên x \(\in\left\{-8;-7;-6;...;-1;0;1;2;3;4;5;6\right\}\)

Do đó tổng các số nguyên x là:

(-6 + 6) + ( -5 + 5 ) + (-4 + 4 ) + (-3 + 3 ) + (-2 + 2 ) + (-1+ 1) + ( -8 - 7) + 0

= 0 + 0 + 0 + 0 + 0 + 0 + (-15) + 0

= -15

# HOK TỐT #

Khách vãng lai đã xóa
Trần Ngọc Lực
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 9:44

A nguyên

=>10x-15+6 chia hết cho 2x-3

=>\(2x-3\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{2;1;3;0\right\}\)

Trần Đình Tuệ
Xem chi tiết
Phùng Minh Quân
31 tháng 7 2019 lúc 9:32

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)

\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)

Phùng Minh Quân
31 tháng 7 2019 lúc 9:33

à nhầm, \(a=b=c=\frac{4}{3}\) nhé 

MiMi -chan
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 6 2023 lúc 11:01

1B

2A

VŨ THỊ LAN
Xem chi tiết
VŨ THỊ LAN
16 tháng 9 2017 lúc 18:06

giúp mk vs nha , mk đăng cần rất gấp

Thiên Thần Công Chúa
16 tháng 9 2017 lúc 18:21

mình hk bít vít

Ben 10
16 tháng 9 2017 lúc 19:47

a) A = (2x + 1)/(x² + 2) 
Tìm min 
ta có: A = (2x + 1)/(x² + 2) 
=> 2A = (4x + 2)/(x² + 2) 
= (4x + 2 + x² - x² + 2 - 2)/(x² + 2) 
= [ (x² + 4x + 4) + (-x² - 2) ]/(x² + 2) 
= [ (x + 2)² - (x² + 2) ]/(x² + 2) 
= (x + 2)²/(x² + 2) - (x² + 2)/(x² + 2) 
= (x + 2)²/(x² + 2) - 1 
Ta có: (x + 2)² ≥ 0 và (x² + 2) > 0 
=> (x + 2)²/(x² + 2) ≥ 0 
=> (x + 2)²/(x² + 2) - 1 ≥ -1 
=> 2A ≥ -1 
=> A ≥ -1/2 
Dấu bằng xảy ra <=> (x + 2)²/(x² + 2) = 0 
<=> (x + 2)² = 0 
<=> x + 2 = 0 
<=> x = -2 

Tìm max: A = (2x + 1)/(x² + 2) 
= (2x + 2 - 1 + x² - x²)/(x² + 2) 
= [ (x² + 2) + (-x² + 2x - 1) ]/(x² + 2) 
= [ (x² + 2) - (x² - 2x + 1) ]/(x² + 2) 
= [ (x² + 2) - (x - 1)² ]/(x² + 2) 
= (x² + 2)/(x² + 2) - (x - 1)²/(x² + 2) 
= 1 - (x - 1)²/(x² + 2) 
Do (x - 1)² ≥ 0 và (x² + 2) > 0 
=> (x - 1)²/(x² + 2) ≥ 0 
=> -(x - 1)²/(x² + 2) ≤ 0 
=> 1 - (x - 1)²/(x² + 2) ≤ 1 
=> A ≤ 1. 
Dấu bằng xảy ra <=> -(x - 1)²/(x² + 2) = 0 
<=> -(x - 1)² = 0 
<=> (x - 1)² = 0 
<=> x - 1 = 0 
<=> x = 1. 

b) Tìm min: B = (8x + 3)/(4x² + 1) 
= (8x + 4 - 1 + 4x² - 4x²)/(4x² + 1) 
= [ (4x² + 8x + 4) + (-4x² - 1) ]/(4x² + 1) 
= [ (4x² + 8x + 4) - (4x² + 1) ]/(4x² + 1) 
= [ (2x + 2)² - (4x² + 1) ]/(4x² + 1) 
= (2x + 2)²/(4x² + 1) - (4x² + 1)/(4x² + 1) 
= (2x + 2)²/(4x² + 1) - 1 
Do (2x + 2)² ≥ 0 và 4x² + 1 > 0 
=> (2x + 2)²/(4x² + 1) ≥ 0 
=> (2x + 2)²/(4x² + 1) - 1 ≥ -1 
=> B ≥ -1 
Dấu bằng xảy ra <=> (2x + 2)²/(4x² + 1) = 0 
<=> (2x + 2)² = 0 
<=> 2x + 2 = 0 
<=> 2x = -2 
<=> x = -1. 

Tìm max: B = (8x + 3)/(4x² + 1) 
= (8x + 4 - 1 + 16x² - 16x²)/(4x² + 1) 
= [ (16x² + 4) + (-16x² + 8x - 1) ]/(4x² + 1) 
= [ 4(4x² + 1) - (16x² - 8x + 1) ]/(4x² + 1) 
= [ 4(4x² + 1) - (4x - 1)² ]/(4x² + 1) 
= 4(4x² + 1)/(4x² + 1) - (4x - 1)²/(4x² + 1) 
= 4 - (4x - 1)²/(4x² + 1) 
Đến đây lập luận tương tự để chỉ ra maxB = 4 <=> x = 1/4 

c) tìm min: C = 2(x² + x + 1)/(x² + 1) 
= (2x² + 2x + 2)/(x² + 1) 
= [ (x² + 1) + (x² + 2x + 1) ]/(x² + 1) 
= [ (x² + 1) + (x + 1)² ]/(x² + 1) 
= (x² + 1)/(x² + 1) + (x + 1)²/(x² + 1) 
Lập luận tương tự để tìm ra min C = 1 <=> x = -1 

tìm max: C = 2(x² + x + 1)/(x² + 1) 
= (2x² + 2x + 2)/(x² + 1) 
= (3x² - x² + 2x + 3 - 1)/(x² + 1) 
= [ (3x² + 3) + (-x² + 2x - 1) ]/(x² + 1) 
= [ 3(x² + 1) - (x² - 2x + 1) ]/(x² + 1) 
= [ 3(x² + 1) - (x - 1)² ]/(x² + 1) 
= 3(x² + 1)/(x² + 1) - (x - 1)²/(x² + 1) 
Lập luận tương tự như trên để tìm ra max C = 3 <=> x = 1