Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ta duy tuan
Xem chi tiết
Nguyet9ak47
Xem chi tiết
Đinh Đức Hùng
16 tháng 9 2017 lúc 20:43

Vì a:b:c là độ dài  cạnh tam giác nên \(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}\Rightarrow\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}}\)

Áp dụng bđt AM - GM ta có :

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=\frac{2b}{2}=b\)(1)

\(\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\le\frac{a+b-c+c+a-b}{2}=\frac{2a}{2}=a\)(2)

\(\sqrt{\left(b+c-a\right)\left(c+a-b\right)}\le\frac{b+c-a+c+a-b}{2}=\frac{2c}{2}=c\)(3)

Nhân vế với vế của (1); (2);(3) lại ta được :

\(\sqrt{\left(a+b-c\right)^2\left(b+c-a\right)^2\left(c+a-b\right)^2}\le abc\)

\(\Leftrightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)(đpcm)

Phạm Minh Thành
Xem chi tiết
Yeutoanhoc
Xem chi tiết
Trần Minh Hoàng
1 tháng 6 2021 lúc 7:12

Áp dụng bđt AM - GM ta có \(\sqrt{\dfrac{a^2+\left(b+c\right)^2}{2a\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a^2+\left(b+c\right)^2}{2a\left(b+c\right)}+1\right)=\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{2a\left(b+c\right)}\)

\(\Rightarrow\sqrt{\dfrac{a\left(b+c\right)}{a^2+\left(b+c\right)^2}}\ge\dfrac{2\sqrt{2}a\left(b+c\right)}{\left(a+b+c\right)^2}\).

Tương tự,...

Cộng vế với vế ta có \(\sqrt{\dfrac{a\left(b+c\right)}{a^2+\left(b+c\right)^2}}+\sqrt{\dfrac{b\left(c+a\right)}{b^2+\left(c+a\right)^2}}+\sqrt{\dfrac{c\left(a+b\right)}{c^2+\left(a+b\right)^2}}\ge\dfrac{4\sqrt{2}\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\). (*)

Mặt khác do a, b, c là độ dài ba cạnh của 1 tam giác nên \(a\left(b+c-a\right)+b\left(c+a-b\right)+c\left(a+b-c\right)>0\Rightarrow2\left(ab+bc+ca\right)\ge a^2+b^2+c^2\Rightarrow4\left(ab+bc+ca\right)\ge\left(a+b+c\right)^2\). (**)

Từ (*) và (**) ta có đpcm.

 

Nguyễn Thu Quyên
Xem chi tiết
Bùi Thế Quang
Xem chi tiết
Nguyễn Minh Huyền
Xem chi tiết
Akai Haruma
20 giờ trước (22:22)

Lời giải:

Xét hiệu: $a^2+b^2+c^2-(ab+bc+ac)=\frac{2a^2+2b^2+2c^2-2(ab+bc+ac)}{2}=\frac{(a^2+b^2-2ab)+(b^2+c^2-2bc)+(c^2+a^2-2ac)}{2}=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}\geq 0$ với mọi $a,b,c>0$

$\Rightarrow a^2+b^2+c^2\geq ab+bc+ac(1)$

Lại có:

Do $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác ta có:

$a< b+c$

$\Rightarrow a^2< a(b+c)$

Tương tự: $b^2< b(a+c); c^2< c(a+b)$

Cộng theo vế các BĐT trên: $a^2+b^2+c^2< a(b+c)+b(a+c)+c(a+b)=2(ab+bc+ac)(2)$

Từ $(1); (2)$ ta có đpcm.

Công Chúa Trần
Xem chi tiết
Người Chung Tình
15 tháng 3 2016 lúc 21:33

mình cm cuối cùng ra 1/2(a+b-c)((a-b)^2+(a+c)^2+(b+c)^2)>0(vìa,b,c là ba cạnh của tam giác)

Dương Bình Vũ
Xem chi tiết