Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyennhuhoa
Xem chi tiết
conan
Xem chi tiết
Dich Duong Thien Ty
21 tháng 7 2015 lúc 16:51

->ad=bc

 ->ad+dc=bc+dc

 ->d(a+c)=c(b+d)

 ->(a+c)/(b+d)=c/d=a/b.ok

Trần Thị Loan
21 tháng 7 2015 lúc 15:27

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\) => \(\frac{a}{c}+1=\frac{b}{d}+1\)=> \(\frac{a}{c}+\frac{c}{c}=\frac{b}{d}+\frac{d}{d}\)=> \(\frac{a+c}{c}=\frac{b+d}{d}\) => \(\frac{a+c}{b+d}=\frac{c}{d}=\frac{a}{b}\)

Vậy \(\frac{a+c}{b+d}=\frac{a}{b}\)

Đăng Nhật Hoàng
Xem chi tiết
Tran thi anh
Xem chi tiết
Hoàng Hà Khoa
Xem chi tiết
nguyễn khắc bảo
15 tháng 10 2021 lúc 18:38

vì \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\)mà áp dụng tính chất day tỉ số bằng nhau ta có \(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}\)  ;    \(\frac{b+c}{d+a}=\frac{b}{d}=\frac{c}{a}\)

vì \(\frac{a}{c}=\frac{b}{d}\)\(\frac{c}{a}=\frac{b}{d}\)=>\(\frac{a}{c}=\frac{c}{a}\)=>a.a=c.c=>\(a^2\)=\(c^2\)=>a=c

Vậy nếu\(\frac{a+b}{c+d}=\frac{b+c}{a+d}\)  thì a=c

Khách vãng lai đã xóa
Phước Lộc
18 tháng 10 2021 lúc 11:16

Vì \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\) , Áp dụng t/c của dãy tỉ số bằng nhau, ta có : 

\(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}\)

\(\frac{b+c}{d+a}=\frac{b}{d}=\frac{c}{a}\)

Vì \(\frac{a}{c}=\frac{b}{d}\) mà \(\frac{c}{a}=\frac{b}{d} \Rightarrow\frac{a}{c}=\frac{c}{a} \Rightarrow a.a=c.c=a^2.c^2 \Rightarrow a=c\)

Vậy : \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\) thì \(\Leftrightarrow a=c\)

Khách vãng lai đã xóa
Vũ Thế Lê Anh
Xem chi tiết
Đinh Tuấn Việt
Xem chi tiết
Lê Anh Dũng
Xem chi tiết
Nguyễn Như Đạt
Xem chi tiết
zZz Phan Cả Phát zZz
10 tháng 3 2017 lúc 21:59

Áp dụng t/chất dãy tỉ dố bẳng nhau , ta có :

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\)

Cho dù a khác c thì a + b + c + d = 1