Những câu hỏi liên quan
Trần Bích Ngân
Xem chi tiết
zZz Cool Kid_new zZz
21 tháng 7 2020 lúc 21:16

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Minh Đăng
21 tháng 7 2020 lúc 21:01

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
21 tháng 7 2020 lúc 21:05

1) có \(2y\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow\left(\sqrt{xy}+\frac{1}{4\sqrt{xy}}\right)^2+\frac{15}{16xy}+\frac{1}{2}\ge\frac{15}{16}\cdot4+\frac{1}{2}=\frac{17}{4}\)

Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Phước Nhanh Nguyễn
Xem chi tiết
Nguyễn Thị BÍch Hậu
21 tháng 5 2015 lúc 22:07

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

Bình luận (0)
Nguyễn Thị BÍch Hậu
21 tháng 5 2015 lúc 22:18

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

Bình luận (0)
Lai  DUC Tuyen
22 tháng 8 2017 lúc 17:50

x=1 nhe nhap minh di ma ket ban voi minh nhe

Bình luận (0)
Cô Gái Mùa Đông
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
7 tháng 3 2021 lúc 19:09

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(1+\frac{1}{x}+1+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)(1)

Lại có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{1}=4\)(2)

Từ (1) và (2) => \(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Đẳng thức xảy ra <=> x = y = 1/2

Vậy MinA = 18 

Bình luận (0)
 Khách vãng lai đã xóa
Công chúa thủy tề
Xem chi tiết
Công chúa thủy tề
Xem chi tiết
nguyen hong thai
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 11 2021 lúc 20:57

\(y=\dfrac{x}{2}+\dfrac{18}{x}\ge2\sqrt{\dfrac{18x}{2x}}=6\)

\(y_{min}=6\) khi \(x=6\)

Bình luận (0)
Sultanate of Mawadi
Xem chi tiết
zZz Cool Kid_new zZz
15 tháng 7 2020 lúc 23:02

@AZM: Thật không may dấu "=" không xảy ra bạn nhé :))

Ta có:\(S=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)

Đặt \(a=\frac{x^2+y^2}{xy}\ge\frac{2\sqrt{x^2y^2}}{xy}=2\)

Khi đó:\(S=a+\frac{1}{a}=\left(\frac{a}{4}+\frac{1}{a}\right)+\frac{3a}{4}\ge2\sqrt{\frac{a}{4}\cdot\frac{1}{a}}+\frac{3\cdot2}{4}=\frac{5}{2}\)

Đẳng thức xảy ra tại x=y

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Minh Đăng
15 tháng 7 2020 lúc 16:45

Bài làm:

Ta có: \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\ge2\sqrt{\frac{\left(x^2+y^2\right)}{xy}.\frac{xy}{\left(x^2+y^2\right)}}=2.1=2\)

Dấu "=" xảy ra khi: \(x=y\)

Vậy GTNN biểu thức là 2 khi \(x=y\)

Học tốt!!!!

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Minh Đăng
15 tháng 7 2020 lúc 22:02

Dạ đây là bất đẳng thức Cô-si ạ, bạn có thể chứng minh bằng cách sau:

Ta có: \(\left(x-y\right)^2\ge0\left(\forall xy\right)\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2+4xy\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\sqrt{\left(x+y\right)^2}\ge\sqrt{4xy}\)

\(\Leftrightarrow x+y\ge2\sqrt{xy}\)

Bạn áp dụng bất đẳng thức trên vào bài làm là được ạ!

Bình luận (0)
 Khách vãng lai đã xóa
Daffodil Clover
Xem chi tiết
Trần Anh
Xem chi tiết