Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thi thu thuy khuat
Xem chi tiết
Phạm Minh Quang
24 tháng 11 2019 lúc 18:33

a. A có nghĩa khi \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne\\\frac{x+\sqrt{x}}{\sqrt{x}+1}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

A\(=\frac{x-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{x+\sqrt{x}}\)\(=\frac{x-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

b. \(x=7+4\sqrt{3}\Rightarrow\)A = \(\frac{\sqrt{7+4\sqrt{3}}+1}{\sqrt{7+4\sqrt{3}}}=\frac{\sqrt{\left(2+\sqrt{3}\right)^2}+1}{\sqrt{\left(2+\sqrt{3}\right)^2}}=\frac{3+\sqrt{3}}{2+\sqrt{3}}\)

Khách vãng lai đã xóa
thi thu thuy khuat
Xem chi tiết
Nguyễn Đức Anh
24 tháng 11 2019 lúc 8:27

a/ Ta có: A=\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)=\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+1\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)
\(=\left(\sqrt{x}+1\right):\left(\sqrt{x}\right)=\frac{\sqrt{x}+1}{\sqrt{x}}\)
b/ Ta có :\(x=7+4\sqrt{3}=3+4\sqrt{3}+4=\left(\sqrt{3}+2\right)^2 \)
\(\Rightarrow\sqrt{x}=|\sqrt{3}+2|=\sqrt{3}+2\)
Thay x vào A ta có:

A\(=\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{3}+2+1}{\sqrt{3}+2}=\frac{\sqrt{3}+3}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+3\right)\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{3-\sqrt{3}}{1}=3-\sqrt{3}\)

Khách vãng lai đã xóa
thi thu thuy khuat
Xem chi tiết
THN
Xem chi tiết
Khải Lê
Xem chi tiết
phú trần
Xem chi tiết
Trần Thùy Trang
1 tháng 6 2017 lúc 20:38

A=(1/x-2 - (2x/(2-x)(2+x) - 1/2+x) ) *(2-x)/x 
=(1/x-2 - x^2+5x-2/(2-x)(2+x))*2-x/x 
=(-x^3-4x^2+12x/(x-2)(2-x)(2+x))*2-x/x 
= - x(x-2)(x+6)(2-x)/x(x-2)(2-x)(2+x) 
= - x+6/x+2

KHANH QUYNH MAI PHAM
Xem chi tiết
Phạm Thị Thùy Linh
29 tháng 7 2019 lúc 21:02

\(B=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-1}\right)\)

\(=\frac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)\(:\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\)\(\frac{x-1-x+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{2}\)

\(=\frac{\sqrt{x}+3}{2\sqrt{x}}\)

Huong Nguyen
Xem chi tiết
Hoàng Lê Bảo Ngọc
30 tháng 5 2016 lúc 20:16

\(A=\left(\frac{\sqrt{x}}{x-4}+\frac{2}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)(DK : \(x\ge0;x\ne4\))

\(=\frac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{x-4+10-x}{\sqrt{x}+2}\)

\(=\frac{-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+2}{6}=\frac{1}{2-\sqrt{x}}\)

Để A > 0 thì \(2-\sqrt{x}>0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

Vậy để A < 0 thì x < 4

Cô Hoàng Huyền
31 tháng 5 2016 lúc 9:22

Bảo Ngọc kết luận hơi sai một chút nhé. Để A > 0 thì x < 4 nhé :)

Hoàng Lê Bảo Ngọc
31 tháng 5 2016 lúc 21:33

Vâng ạ!

Phạm Trần Linh Anh
Xem chi tiết