Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Michiel Girl mít ướt
Xem chi tiết
Trần Đức Thắng
29 tháng 9 2015 lúc 22:14

x(x+y+z) + y(x+y+z) + z(x+y+z) = 2 + 25 - 2 = 25 

=> ( x+ y+ z )(x+y+z) = 25 

=> x + y+ z = 5 hoặc x + y +z = -5 

(+) x + y +z = 5 => x.5 = 2 => x = 2/5 

                        => y.5=5 => y = 1 

                        => z.5 = -2 => z = -2/5 

(+) x+ y+ z = -5 => -5x = 2 => x= -2/5 (loại x > 0)

Vậy x = 2/5 ; y = 1 ; z = -2/5 

Naly Tv
Xem chi tiết
 Mashiro Shiina
25 tháng 10 2018 lúc 18:01

Nesbit:v dài

 Mashiro Shiina
25 tháng 10 2018 lúc 18:01

Nham ko phai Nesbit, Cauchy-Schwarz ra luon

Cao Thanh Nga
Xem chi tiết
Cao Thanh Nga
Xem chi tiết
Khánh Hương Lê Thị
3 tháng 6 2018 lúc 19:27

L8 đã học hằng đẳng thức chưa e nhỉ?

~Mưa_Rain~
19 tháng 6 2018 lúc 10:00

hình như rồi

bí mật ra
Xem chi tiết
Mun Amie
6 tháng 7 2023 lúc 15:04

Đặt \(\dfrac{1}{a}=\dfrac{1}{x+y},\dfrac{1}{b}=\dfrac{1}{y+z},\dfrac{1}{c}=\dfrac{1}{z+x}\)

Đề trở thành: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\), tính \(P=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) Tương đương \(ab+bc=-ac\)

\(P=\dfrac{b^3c^3+a^3c^3+a^3b^3}{a^2b^2c^2}=\dfrac{\left(ab+bc\right)\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}=\dfrac{-ac\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}\)

\(=\dfrac{a^2c^2-a^2b^2+ab^2c-b^2c^2}{ab^2c}=\dfrac{ac}{b^2}-\dfrac{a}{c}+1-\dfrac{c}{a}\)\(=ac\left(\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\right)-\dfrac{a}{c}+1-\dfrac{c}{a}\) (do \(\dfrac{1}{b}=-\dfrac{1}{a}-\dfrac{1}{c}\) tương đương \(\dfrac{1}{b^2}=\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\)

\(=3\)

Vậy P=3

Law Trafargal
Xem chi tiết
Akai Haruma
1 tháng 12 2019 lúc 11:47

Lời giải:

Từ \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=2\)

\(\Rightarrow (x+y+z)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{xy}{x+z}+\frac{xz}{x+y}+\frac{xy}{y+z}+\frac{y^2}{x+z}+\frac{zy}{x+y}+\frac{xz}{y+z}+\frac{zy}{x+z}+\frac{z^2}{x+y}=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{xy+zy}{x+z}+\frac{xz+yz}{x+y}+\frac{xy+xz}{y+z}=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+y+z+x=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=x+y+z\) (đpcm)

Khách vãng lai đã xóa
Anh Đúc Cấn
Xem chi tiết
Định Đặng
Xem chi tiết
Định Đặng
Xem chi tiết
Nguyễn Thu Thủy Ngân
Xem chi tiết
Nguyễn Thu Thủy Ngân
18 tháng 2 2022 lúc 17:48

Nguyễn Thu Thủy Ngân

Trần Ngọc Mai
18 tháng 4 2022 lúc 20:51

What ???