Giải và biện luận bất phương trình:
a(x-1)/6 + (x-a)/3 > (x+1)/2 (a là tham số)
Giải và biện luận bất phương trình:
(a-2)x lớn hơn hoặc bằng (2a-1)x-3 (a là tham số)
giải bất phương trình:
a.5−m(x+1)>x−m5−m(x+1)>x−m ( m là tham số )
b. (m2−1)x≥3(m2−1)x≥3 ( m là tham số )
giải bất phương trình:
a. 5−m(x+1)>x−m5−m(x+1)>x−m ( m là tham số )
b. (m2−1)x≥3(m2−1)x≥3 ( m là tham số )
c. 2x−57−x≥0
giải và biện luận các phương trình ( a và k là những tham số ) : a) a/x-2 +1/x-2a =1 ; b) 3x+k/x-3 = x-k/x+3
giải bất phương trình:
a. \(5-m\left(x+1\right)>x-m\) ( m là tham số )
b. \(\left(m^2-1\right)x\ge3\) ( m là tham số )
c. \(\dfrac{2x-5}{7-x}\ge0\)
Giải và biện luận các phương trình sau theo tham số m
a, m(x-m+3)=m(x-2)+6
b, (m+1)x^2 - 2(m-1)x+ m -2=0
a: \(\Leftrightarrow mx-m^2+3m=mx-2m+6\)
\(\Leftrightarrow-m^2+5m-6=0\)
\(\Leftrightarrow\left(m-2\right)\left(m-3\right)=0\)
=>m=2 hoặc ,=3
b: Để phương trình là phương trình bậc hai một ẩn thì m+1<>0
hay m<>-1
\(\text{Δ}=\left(2m-2\right)^2-4\left(m+1\right)\left(m-2\right)\)
\(=4m^2-8m+4-4\left(m^2-m-2\right)\)
\(=4m^2-8m+4-4m^2+4m+8\)
=-4m+12
Để phương trình có hai nghiệm phân biệt thì -4m+12>0
=>-4m>-12
hay m<3
Để phương trình có nghiệm kép thì -4m+12=0
hay m=3
Để phương trình vô nghiệm thì -4m+12<0
hay m>3
Bài 1: giải các bất phương trình sau:
a, |x3+1|>= x+1
Bài 2: giải và biện luận biểu thức:
m(x-1)/9 -x+2m/6 < x-16/18
m là tham số
Giải và biện luận bất phương trình sau theo tham số m.
( m - 1 ) . x ≤ 0
Điều kiện của bất phương trình là x ≥ 0
Nếu m ≤ 1 thì m - 1 ≤ 0, bất phương trình đã cho nghiệm đúng với mọi x ≥ 0
Nếu m > 1 thì m – 1 > 0, bất phương trình đã cho tương đương với √x ≤ 0 ⇔ x = 0
Vậy: Nếu m ≤ 1 thì tập nghiệm của bất phương trình là [0; +∞)
Nếu m > 1 thì tập nghiệm của bất phương trình là {0}
Bài 1: Giải và biện luận các phương trình sau theo tham số m a) 2mx + 3 = m - x b) m(x - 2) = 3x + 1
b: Để phương trình vô nghiệm thì x-2=0
hay x=2
Để phương trình có nghiệm thì x-2<>0
hay x<>2