Câu 1: Tính tổng \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
Tính tổng A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}} \)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\left(1\right)\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\left(2\right)\)
Lấy (2) - (1) ta được:\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^{100}}\right)\)
\(\Leftrightarrow2A=1-\frac{1}{3^{100}}\)
\(\Leftrightarrow A=\left(\frac{3^{100}-1}{3^{100}}\right):2\)
\(\Leftrightarrow A=\frac{3^{100}-1}{2.3^{100}}\)
Tính tổng \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
Bạn phải giải thích cụ thể ra cho mk biết chứ
A× 3 = 1+ 1/3 + 1/3^2 + ...+ 1/3^99
A×3-a = 1- 1/ 3^100
A= (1/3^100): 2
Câu 1: Thực hiện phép tính:
29 x ( 19 - 13) - 19 x (29 - 13)
Câu 2: Tính tổng
S = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)
1 : 29 x ( 19 -13 ) - 19 x ( 29 - 13 )
= 29 x 6 - 19 x 16
= 174 - 304
= - 130
2 : 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
= 1 - \(\frac{1}{100}\)
= \(\frac{99}{100}\)
tính tổng
A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)(1)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)(2)
Lấy (2) trừ đi (1) ta có :
\(2A=1-\frac{1}{3^{100}}\)
\(\Rightarrow A=\frac{\left(1-\frac{1}{3^{100}}\right)}{2}\)
Tính tổng: A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)
ta có 3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^{100}}\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)
Tính các tổng sau:
a) \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}.\)
b) \(-\frac{4}{5}+\frac{4}{5^2}-\frac{4}{5^3}+...+\frac{4}{5^{200}}.\)
c)\(\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)
Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)
\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)
\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)
\(\Rightarrow6A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)
Tính tổng :
1, A = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.................+\frac{1}{100}\)
2, B = \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+....................+\frac{99}{100}\)
Tính nhanh tổng A :
A =\(3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)
\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+.....+\frac{3}{1+2+...+100}\)
\(=3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\)
\(=\frac{2}{2}.\left(3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\right)\)
\(=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)
\(=6.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(=6.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=6.\left(1-\frac{1}{101}\right)\)
\(=6.\frac{100}{101}=\frac{600}{101}\)
Vậy \(A=\frac{600}{101}\)
\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)
\(A=\frac{3.2}{2}+\frac{3.2}{\left(1+2\right).2}+\frac{3.2}{\left(1+2+3\right).2}+...+\frac{3.2}{\left(1+2+...+100\right).2}\)
\(A=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)
\(A=\frac{6}{1.2}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)
\(A=6\cdot\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=6\cdot\left(1-\frac{1}{101}\right)=6\cdot\frac{100}{101}=\frac{600}{101}\)
Vay A = ........
mình thi toán có câu này khó mong mấy bạn giúp
Tính tổng A
A = \(\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+....+\frac{3}{1+2+3+4+5+6+...+99+100}\)
mong mấy bạn giúp.
mơn nhiều !!!
\(A=\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+3+...+99+100}\)
\(=3+\frac{3}{\frac{\left(1+2\right).2}{2}}+\frac{3}{\frac{\left(1+3\right).3}{2}}+...+\frac{3}{\frac{\left(1+100\right).100}{2}}\)
\(=3+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}=3+6.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(=3+6.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=3+6.\left(\frac{1}{2}-\frac{1}{101}\right)=3+6.\frac{99}{202}=\frac{600}{101}\)
Tốt nhất bạn nên nói mấy bài đơn giản ik dạng nâng cao ko có cho thi đâu đừng lo
tham khảo câu hỏi của mik giống đó! có nguwoif trả lời dc hok 24 tik zui