Câu 1: Tính: Afrac{1+left(1+2right)+left(1+2+3right)+...+left(1+2+3+...+2017right)}{1cdot2+2cdot3+3cdot4+...+2017cdot2018}Câu 2: Cho: Afrac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8} và Bfrac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}Câu 3: Chứng tỏ rằng: frac{1}{3}+frac{1}{31}+frac{1}{35}+frac{1}{37}+frac{1}{47}+frac{1}{53}+frac{1}{61} frac{1}{2}Câu 4: Tìm các số tự nhiên a, b sao cho: frac{a}{2}+frac{b}{3}frac{a+b}{2+3}Câu 5: Tính Aleft(frac{1}{2^2}-1right)cdotleft(frac{1}{3^2}-1right)cdotleft(frac{1}{4^2}-1rig...
Đọc tiếp
Câu 1: Tính: \(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1\cdot2+2\cdot3+3\cdot4+...+2017\cdot2018}\)
Câu 2: Cho: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\) và \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
Câu 3: Chứng tỏ rằng: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)
Câu 4: Tìm các số tự nhiên a, b sao cho: \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)
Câu 5: Tính \(A=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot...\cdot\left(\frac{1}{100^2}-1\right)\)
Câu 6: Tìm số tự nhiên n để các phân số tối giản
\(A=\frac{2n+3}{3n-1}\), \(B=\frac{3n+2}{7n+1}\)
Câu 7: So sánh: \(A=1\cdot3\cdot5\cdot7\cdot...\cdot99\) với \(B=\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}\cdot...\cdot\frac{100}{2}\)
Câu 8: Chứng tỏ rằng:
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}< 1\)
b) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Câu 9: Cho \(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\)
Chứng minh rằng: \(\frac{1}{3}< A< \frac{1}{2}\)
Câu 10: Chứng tỏ rằng: \(\frac{7}{12}< \frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}< 1\)