Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
๖ۣۜBá ๖ۣۜVươηɠ

Câu 1: Tính tổng \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

Never_NNL
14 tháng 6 2018 lúc 18:07

3A = 1 + 1/3 + 1/3^2 + ... + 1/3^199

3A - A = ( 1 + 1/3 + 1/3^2 + ... + 1/3^99 ) - ( 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^100 )

2A = 1 - 1/3^100

A = ( 1 - 1/3^100 ) / 2

kudo shinichi
14 tháng 6 2018 lúc 18:10

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\)

\(2A=1-\frac{1}{3^{100}}\)

\(A=\frac{3^{100}-1}{3^{100}.2}\)

mk chỉ làm được đến đây thôi


Các câu hỏi tương tự
nguyenhien
Xem chi tiết
duong dai phong
Xem chi tiết
Trần Tuyết Nhi
Xem chi tiết
Nguyễn Trịnh Nam Phương
Xem chi tiết
Trần Tuấn Anh
Xem chi tiết
Nguyễn Xuân Nhi
Xem chi tiết
VHT_Luffy2k8
Xem chi tiết
Nguyễn Hoàng Ngọc Hân
Xem chi tiết
Phúc Crazy
Xem chi tiết