Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng minh
Xem chi tiết
Nguyễn Lan Anh
Xem chi tiết
Chó Mòe
Xem chi tiết
Trương Khánh Ly
Xem chi tiết
Hoàng Tử Hà
23 tháng 2 2021 lúc 14:18

a/ \(\lim\limits_{x\rightarrow-1}\dfrac{2x^3-5x-4}{\left(x+1\right)^2}=\dfrac{2.\left(-1\right)^3-5\left(-1\right)-4}{\left(-1+1\right)^2}=-\dfrac{1}{0}=-\infty\)

b/ \(\lim\limits\left(x^3+2\sqrt{x^5}-1\right)=\lim\limits x^3\left(1+0-0\right)=+\infty\)

 

Bui Ngoc Linh
Xem chi tiết
Võ Thị Kim Dung
Xem chi tiết
Akai Haruma
6 tháng 5 2020 lúc 23:25

Lời giải:

\(\lim\limits_{x\to -2}\frac{2|x-1|-5\sqrt{x^2-3}}{2x+3}=\frac{2|-2-1|-5\sqrt{(-2)^2-3}}{2.-2+3}=-1\)

Hoang Linh
Xem chi tiết
dung doan
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2021 lúc 17:46

\(a=\lim\limits_{x\rightarrow2}\dfrac{\left(x^2-x-2\right)\left(x^2+x\sqrt[3]{3x+2}+\sqrt[3]{\left(3x+2\right)^2}\right)}{\left(x^3-3x-2\right)\left(x+\sqrt[]{x+2}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+1\right)\left(x^2+x\sqrt[3]{3x+2}+\sqrt[3]{\left(3x+2\right)^2}\right)}{\left(x-2\right)\left(x+1\right)^2\left(x+\sqrt[]{x+2}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+x\sqrt[3]{3x+2}+\sqrt[3]{\left(3x+2\right)^2}}{\left(x+1\right)\left(x+\sqrt[]{x+2}\right)}=...\)

\(b=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt[]{1+2x}-x-1\right)+\left(x+1-\sqrt[3]{1+3x}\right)}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x^2}{\sqrt[]{1+2x}+x+1}+\dfrac{x^3+3x^2}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{1}{\sqrt[]{1+2x}+x+1}+\dfrac{x+3}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}\right)\)

\(=...\)

Nguyễn Việt Lâm
7 tháng 2 2021 lúc 17:55

\(c=\lim\limits_{x\rightarrow-1}\dfrac{\left(\sqrt[]{5+4x}-2x-3\right)+\left(2x+3-\sqrt[3]{7+6x}\right)}{x^3+x^2-x-1}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{5+4x-\left(2x+3\right)^2}{2x+3+\sqrt[]{5+4x}}+\dfrac{\left(2x+3\right)^3-\left(7+6x\right)}{\left(2x+3\right)^2+\left(2x+3\right)\sqrt[3]{7+6x}+\sqrt[3]{\left(7+6x\right)^2}}}{\left(x-1\right)\left(x+1\right)^2}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{-4\left(x+1\right)^2}{2x+3+\sqrt[]{5+4x}}+\dfrac{\left(x+1\right)^2\left(8x+20\right)}{\left(2x+3\right)^2+\left(2x+3\right)\sqrt[3]{7+6x}+\sqrt[3]{\left(7+6x\right)^2}}}{\left(x-1\right)\left(x+1\right)^2}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{-4}{2x+3+\sqrt[]{5+4x}}+\dfrac{8x+20}{\left(2x+3\right)^2+\left(2x+3\right)\sqrt[3]{7+6x}+\sqrt[3]{\left(7+6x\right)^2}}}{x-1}\)

\(=...\)

dung doan
Xem chi tiết
Hoàng Tử Hà
27 tháng 1 2021 lúc 18:40

a/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}\sqrt{x^2+1}+\dfrac{2x}{x}+\dfrac{1}{x}}{\dfrac{x}{x}\sqrt[3]{\dfrac{2x^3}{x^3}+\dfrac{x}{x^3}+\dfrac{1}{x^3}}+\dfrac{x}{x}}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}+2}{\sqrt[3]{2}+1}=+\infty\)

b/ \(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2.1^2-1+1}-\sqrt[3]{2.1+3}}{3.1^2-2}=...\)

c/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{x\sqrt{\dfrac{4x^2}{x^2}+\dfrac{x}{x^2}}+x\sqrt[3]{\dfrac{8x^3}{x^3}+\dfrac{x}{x^3}-\dfrac{1}{x^3}}}{x\sqrt[4]{\dfrac{x^4}{x^4}+\dfrac{3}{x^4}}}=\dfrac{2+2}{1}=4\)