Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Anh
Xem chi tiết
alibaba nguyễn
4 tháng 9 2016 lúc 20:18

Ta có (a + c)2 < ab + bc - 2ac

<=> ab + bc - a2 - c2 - 4ac > 0 (1)

Ta lại có a2 + b+ c2 \(\ge\)ab + bc +ca > ab + bc (2)

Từ (1) và (2) => b- 4ac > 0

Vậy PT luôn có nghiệm

NGUYỄN MINH TÀI
Xem chi tiết
Akai Haruma
13 tháng 6 2018 lúc 19:20

Lời giải:

Với $a=0$ thì pt trở thành: \(bx+c=0\)

\((c+a)^2< ab+bc-2ac\Leftrightarrow c^2< bc\Rightarrow c(c-b)< 0\Rightarrow 0< c< b\)

PT luôn có nghiệm \(x=\frac{-c}{b}\)

Với $a\neq 0$

Nếu \(ac<0\Rightarrow b^2-ac>0\Leftrightarrow \Delta>0\) nên pt \(ax^2+bx+c=0\) có nghiệm

Nếu \(ac>0, c>0\Rightarrow a>0\)

Ta có: \((c+a)^2< ab+bc-2ac< ab+bc\) do \(ac>0\)

\(\Leftrightarrow (c+a)^2< b(a+c)\)

\(a>0, c>0\Rightarrow a+c>0\), chia 2 vế cho $a+c$ thu được:

\(0< c+a< b\Rightarrow \Delta'=b^2-4ac>(c+a)^2-4ac=(a-c)^2\geq 0\)

Do đó pt \(ax^2+bx+c=0\) có nghiệm

Huỳnh Thị Thu Uyên
Xem chi tiết
giang nguyen
Xem chi tiết
le ngoc anh vu
Xem chi tiết
Cold Blood
28 tháng 10 2018 lúc 15:11

đề sai rồi.vd:5,-1,-2

LF 2 Super
Xem chi tiết
phượng hoàng tài năng
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Nguyễn Việt Hoàng
Xem chi tiết
Võ Thạch Đức Tín
3 tháng 9 2018 lúc 20:00

Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}}\Rightarrow\left(ax+by\right)+\left(bx+cy\right)+\left(cx+ay\right)=a+b+c\)

\(\Rightarrow\left(x+y\right)\left(a+b+c\right)=a+b+c\)

\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y-1=0\\a+b+c=0\end{cases}}\)

Xét  \(a+b+c=0\), ta có :

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Xét \(x+y-1=0\),ta có : 

\(x=1-y\)

\(\Rightarrow\hept{\begin{cases}ax+by=c\\bx+cy=a\end{cases}}\Rightarrow\hept{\begin{cases}a-ay+by=c\\b-by+cy=a\end{cases}}\Rightarrow\hept{\begin{cases}\left(b-a\right)y=c-a\\\left(c-b\right)y=a-b\end{cases}}\Rightarrow\frac{b-a}{b-c}=\frac{c-a}{a-b}\)

\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\Rightarrow a^3+b^3+c^3=3abc\)