Compute the vertex angle of an isosceles triangle given that the base angle ia equal to 40o
Given a square with the length of one side is 8 cm and a isosceles triangle with the length of its base is 12 cm. If the area of the square is equal to the area of the isosceles triangle then what is the length of the height of the isosceles triangle, in cm?
Given a square with the length of one side is 8cm and an isosceles triangle with the length of its base is 12 cm . If the area of the square equal of the area of the isosceles triangle then is the length of height of the isosceles triangle ?
M.n ơi kb vs mk nha ! Mk là thành viên ms nên chưa có bn !
Girl 2k5 -FA
Given an isosceles triangle ABC (AB = AC), \(\widehat{A}\) = 108o. AD and BE are the bisectors of angle A and B, BE = 10cm. Caculate AB.
Given two adjacent angles AOB and BOC. The sum of measure of them is equal to 160o and the measure of angle AOB is equal to 7 times the measure of angle BOC
a)Find the measure of each angle
b)Inside angle AOC, draw ray OD such that angle COD=90o. Prove that OD is the bisector of angle BOA.
c)Draw the opposite ray OC' of ray OC. Find the measure of 2 angles AOC and BOC' then compare them
Given two adjacent angles AOB and BOC. The sum of measure of them is equal to 160o and the measure of angle AOB is equal to 7 times the measure of angle BOC
a)Find the measure of each angle
b)Inside angle AOC, draw ray OD such that angle COD=90o. Prove that OD is the bisector of angle BOA.
c)Draw the opposite ray OC' of ray OC. Find the measure of 2 angles AOC and BOC' then compare them
Bạn ấy nói là:
Cho hai góc kề AOB và BOC. Tổng số biện pháp của họ là bằng 160o và là thước đo của góc AOB bằng 7 lần so với thước đo của góc BOC
a) Tìm các số đo mỗi góc
b) Bên trong AOC góc, vẽ tia OD sao cho góc COD = 90o. Chứng minh rằng OD là phân giác của góc BOA.
c) Vẽ OC ray đối diện 'của tia OC. Tìm các biện pháp của 2 góc AOC và BOC 'sau đó so sánh chúng
Let ABC be a triangle having the ratios of the length of the two side sharing the common vertex A as 2:3 . Let AM be the media and Ak be the angle bisector of the triangle. Find the ratio of the areas of the triangle AKM and the triangle AKB.
Let ABC be a triangle having the ratios of the length of the two side sharing the common vertex A as 2:3 . Let AM be the media and Ak be the angle bisector of the triangle. Find the ratio of the areas of the triangle AKM and the triangle AKB.
( Giải bằng tiếng anh )
On the supposition that AB<AC
AK be the angle bisector of the triangle
\(\Rightarrow\) \(\frac{KB}{KC}=\frac{AB}{AC}=\frac{2}{3}\)
\(\Rightarrow\frac{MB-MK}{MC+MK}=\frac{MC-MK}{MC+MK}=\frac{2}{3}\)
\(\Rightarrow3MC-3MK=2MC+2MK\)
\(\Rightarrow MC=5MK\)
\(\Rightarrow BK=MC-MK=5MK-MK=4MK\)
Let AH be the height of the triangle
\(\Rightarrow\frac{S_{AKM}}{S_{ABK}}=\frac{\frac{AH.KM}{2}}{\frac{BK.AH}{2}}=\frac{KM}{4KM}=\frac{1}{4}\)
If AB > AC then
\(\Rightarrow CM=5MK\)
\(\Rightarrow Bk=CM+MK=5MK+MK=6MK\)
\(\Rightarrow\frac{S_{AKM}}{S_{AKB}}=\frac{\frac{AH.MK}{2}}{\frac{AH.BK}{2}}=\frac{MK}{6MK}=\frac{1}{6}\)
In triangle ABC, the measure of angle B is less than 1.5 times the measure of angle A and the measure of angle C is less than 2.5 times the measure of angle A. What is the measure of angle A in degrees?
Answer: The measure of angle A is
In triangle ABC, the measure of angle B is less than 1.5 times the measure of angle A and the measure of angle C is less than 2.5 times the measure of angle A. What is the measure of angle A in degrees?
Answer: The measure of angle A is
ta có: B^+5=1,5A^\(\Leftrightarrow\)B^=1,5A^-5;C^+5=2,5A^\(\Leftrightarrow\)C^=2,5A^-5
mà tổng số đo của một tam giác : A^+B^+C^=180
\(\Leftrightarrow\)A^+(1,5A^-5)+(2,5A^-5)=180
\(\Leftrightarrow\)5A^-10=180
\(\Leftrightarrow\)5A^=190\(\Rightarrow\)A^=380