505 + 495 = ???
100 x 10 = ???
tính bằng cách thuận tiện nhất
327+495+673+505
\(327 + 495+673+505 = (327+673)+(495+505) = 1000+1000 = 2000\)
Tổng của các số có hai chữ số giống nhau là:
a. 945 b. 505 c. 459 d. 495
a) - ( -25) - ( 202 + 125 ) + 402
b) - (-22) - ( 150 + 22 ) - 50
c) ( - 505 ) - (- 154 + 495 ) - ( - 846 )
d) ( 35 - 814 ) - ( 186 - 65 )
a) - ( -25) - ( 202 + 125 ) + 402 = 100
b) - (-22) - ( 150 + 22 ) - 50 = (-200)
c) ( - 505 ) - (- 154 + 495 ) - ( - 846 ) = 990
d) ( 35 - 814 ) - ( 186 - 65 ) = (-1030)
2x-505= -340
x+304=505
x-505=304
720:(x-17)=12
Giải các bất phương trình sau:
a) x − 92 2 + x − 88 3 + x − 84 4 + x − 80 5 ≥ 16 ;
b) x + 50 5 + x + 49 4 − x + 48 3 − x + 47 2 > 0
(Gợi ý: a) tách tử theo x - 100; b) tách tử theo x + 45)
1/1 x 10 + 1/2 x 15 + 1/3 x 20+...........................................+1/98 x 495 + 1/99 x 500
Bài 1: A=2/3*7 + 2/7*11 + 2/11*15+ ... +2/99*103 Bài 2: A=7/2 + 7/6 + 7/12 + 7/20 + 7/30 + 7/42 + 7/56 + 7/72 + 7/90 Bài 3: A=505/10*1212 + 505/12*1414 + 505/14*1616 +...+ 505/96*9898 Bài 4: A=2/1*3 - 4/3*5 - 6/5*7 - ... - 20/19*21 Bài 5: A=1 - 5/6 + 7/12 - 9/20 + 11/30 - 13/42 + 15/56 - 17/72 + 19/90 :>
\(1,A=\dfrac{2}{3\cdot7}+\dfrac{2}{7\cdot11}+\dfrac{2}{11\cdot15}+...+\dfrac{2}{99\cdot103}\\ 2A=\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{99\cdot103}\\ 2A=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{99}-\dfrac{1}{103}\\ 2A=\dfrac{1}{3}-\dfrac{1}{103}=\dfrac{100}{309}\\ A=\dfrac{100}{309}\cdot\dfrac{1}{2}=\dfrac{50}{309}\)
\(2,A=\dfrac{7}{2}+\dfrac{7}{6}+\dfrac{7}{12}+\dfrac{7}{20}+\dfrac{7}{30}+\dfrac{7}{42}+\dfrac{7}{56}+\dfrac{7}{72}+\dfrac{7}{90}\\ A=7\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\right)\\ A=7\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ A=7\left(1-\dfrac{1}{10}\right)=7\cdot\dfrac{9}{10}=\dfrac{63}{10}\)
Bài 1:
Ta có: \(A=\dfrac{2}{3\cdot7}+\dfrac{2}{7\cdot11}+\dfrac{2}{11\cdot15}+...+\dfrac{2}{99\cdot103}\)
\(=\dfrac{1}{2}\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{99\cdot103}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{103}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{100}{309}=\dfrac{50}{309}\)
Bài 2:
Ta có: \(A=\dfrac{7}{2}+\dfrac{7}{6}+\dfrac{7}{12}+\dfrac{7}{20}+\dfrac{7}{30}+\dfrac{7}{42}+\dfrac{7}{56}+\dfrac{7}{72}+\dfrac{7}{90}\)
\(=7\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\)
\(=7\left(1-\dfrac{1}{10}\right)\)
\(=\dfrac{63}{10}\)
so sanh 10 luy thua 10 va 48 luy thua 505
1010 và 48505
1010 = 210.510
48505 = 2505.24505
Do 2505 > 210
24505 > 510
Nên 48505 > 1010
Nhớ li ke mk nhé
10 lũy thừa 10 lớn hơn 48 lũy thừa 505 nếu sai đừng k mình
10^10 và 48^505
10^10=2^10.5^10
48^505=2^505.24^505
vì 2^505>2^10
24^505>5^10
=> 48^505>10^10
tính giá trị của tổng sau :
1/1 x 10 + 1/2 x 15 + 1/3 x 20 + ... + 1/89 x 495 + 1/ 99 x 500
\(\frac{1}{1\times10}+\frac{1}{2\times15}+\frac{1}{3\times20}+...+\frac{1}{98\times495}+\frac{1}{99\times500}\)
\(=\frac{1}{1\times2\times5}+\frac{1}{2\times3\times5}+\frac{1}{3\times4\times5}+...+\frac{1}{98\times99\times5}+\frac{1}{99\times100\times5}\)
\(=\frac{1}{5}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{100}\right)=\frac{1}{5}\times\frac{99}{100}=\frac{99}{500}\)
\(\frac{1}{1\times10}+\frac{1}{2\times15}+\frac{1}{3\times20}+...+\frac{1}{98\times495}+\frac{1}{99\times500}\)
\(=\frac{1}{1\times2\times5}+\frac{1}{2\times3\times5}+\frac{1}{3\times4\times5}+...+\frac{1}{98\times90\times5}+\frac{1}{90\times100\times5}\)
\(=\frac{1}{5}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+...+\frac{99-98}{98\times99}+\frac{100-99}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{100}\right)=\frac{99}{500}\)
cảm ơn bạn Xyz và bạn Đoàn Đức Hà nhìu (^-^) thank you !!!!!!!!!!!!!!!!!